
 COMPUTER SOFTWARE
APPLICATION

TRADE PRACTICAL

NSQF LEVEL - 4

VOLUME - 2

HANDBOOK FOR CRAFTS INSTRUCTOR
TRAINING SCHEME

 NATIONAL INSTRUCTIONAL
 MEDIA INSTITUTE, CHENNAI

Post Box No. 3142, CTI Campus, Guindy, Chennai - 600 032

DIRECTORATE GENERAL OF TRAINING
MINISTRY OF SKILL DEVELOPMENT & ENTREPRENEURSHIP

GOVERNMENT OF INDIA

© NIMI

NOT TO BE REPUBLISHED

iiii

Published by

National Instructional Media Institute
Post.Box.No. 3142,
Guindy, Chennai - 600032
Email : chennai-nimi@nic.in
Website: www.nimi.gov.in

Printed in India at
National Instructional Media Institute
Post. Box. No. 3142,
Guindy,
Chennai - 600032

Copyright C 2024 NIMI

All Rights Reserved

First Edition, 2024

Disclaimer
The information contained herein has been obtained from sources reliable to
Directorate General of Training, New Delhi. NIMI disclaims all warranties to the
accuracy, completeness or adequacy of such information. NIMI shall have no liability
for errors, omissions, or inadequacies in the information contained herein, or for
interpretations thereof. Every effort has been made to trace the owners of the
copyright material included in the book. The publishers would be greatfull for any
omissions brought to their notice for acknowledgements in future editions of the
book. No entity in NIMI shall be responsible for any loss whatsoever, sustained by any
person who relies on this material. The material in this publication is copyrighted. No
parts of this publication may be reproduced, stored or distributed in any form or by
any means either on paper or electronic media, unless authorized by NIMI.

Rs. 360/-

© NIMI

NOT TO BE REPUBLISHED

iii

HANDBOOK ON
TECHNICAL INSTRUCTOR TRAINING

MODULES

A Comprehensive Training Program
under Crafts Instructor Training Scheme (CITS)

for Instructors

ii

Published by

National Instructional Media Institute
Post.Box.No. 3142,
Guindy, Chennai - 600032
Email : chennai-nimi@nic.in
Website: www.nimi.gov.in

Printed in India at
National Instructional Media Institute
Post. Box. No. 3142,
Guindy,
Chennai - 600032

Copyright C 2024 NIMI

All Rights Reserved

First Edition, 2024

Disclaimer
The information contained herein has been obtained from sources reliable to
Directorate General of Training, New Delhi. NIMI disclaims all warranties to the
accuracy, completeness or adequacy of such information. NIMI shall have no liability
for errors, omissions, or inadequacies in the information contained herein, or for
interpretations thereof. Every effort has been made to trace the owners of the
copyright material included in the book. The publishers would be greatfull for any
omissions brought to their notice for acknowledgements in future editions of the
book. No entity in NIMI shall be responsible for any loss whatsoever, sustained by any
person who relies on this material. The material in this publication is copyrighted. No
parts of this publication may be reproduced, stored or distributed in any form or by
any means either on paper or electronic media, unless authorized by NIMI.

© NIMI

NOT TO BE REPUBLISHED

iv

FOREWORD

v

In today’s rapidly evolving world, the role of skilled craftsmen and women is more crucial than
ever. The Craft Instructor Training Scheme (CITS) stands at the forefront of this transformation,
shaping the educators who will train the next generation of artisans and technicians. This book
aims to provide an in-depth understanding of the subject, exploring its significance,
methodologies, and impact on vocational training.

The Craft Instructor Training Scheme was established with the objective of enhancing the
quality of instruction in industrial training institutes and other vocational training institutions. By
equipping instructors with advanced skills and knowledge, the scheme ensures that they are
well-prepared to impart high-quality training to their students. This, in turn, contributes to the
creation of a highly skilled workforce capable of meeting the demands of modern industry.

The initial chapters provide the importance of specialized instructor training. Following this,
detailed chapters delve into the curriculum covering advanced techniques, safety protocols,
and instructional strategies. Each section is designed to offer both theoretical insights and
practical applications, ensuring a well-rounded understanding of the subject.

The book offers recommendations for overcoming obstacles and enhancing the effectiveness
of the program, with the ultimate goal of producing highly skilled instructors capable of shaping
the future workforce.

This book is intended for a diverse audience, including current and aspiring instructors,
vocational training administrators, policymakers, and industry stakeholders. It serves as a
valuable resource for understanding the intricacies of the subject and its pivotal role in
vocational education.

I extend my heartfelt gratitude to all contributors who have shared their experiences and
expertise, enriching this book with their valuable insights. Special thanks to the contribution of
the development team, reviewers and NIMI that have supported this endeavor, providing
essential data and resources.

It is my sincere hope that this book will inspire and guide readers in their efforts to enhance
vocational training, ultimately contributing to the development of a skilled and competent
workforce.

Foreword

ATUL KUMAR TIWARI, I.A.S.
Secretary, MSDE

ATUL KUMAR TIWARI, I.A.S.
Secretary

अतुल कुमार ितवारी, I.A.S.

सिचव GOVERNMENT OF INDIA
MINISTRY OF SKILL DEVELOPMENT

AND ENTREPRENEURSHIP

© NIMI

NOT TO BE REPUBLISHED

v

FOREWORD

v

In today’s rapidly evolving world, the role of skilled craftsmen and women is more crucial than
ever. The Craft Instructor Training Scheme (CITS) stands at the forefront of this transformation,
shaping the educators who will train the next generation of artisans and technicians. This book
aims to provide an in-depth understanding of the subject, exploring its significance,
methodologies, and impact on vocational training.

The Craft Instructor Training Scheme was established with the objective of enhancing the
quality of instruction in industrial training institutes and other vocational training institutions. By
equipping instructors with advanced skills and knowledge, the scheme ensures that they are
well-prepared to impart high-quality training to their students. This, in turn, contributes to the
creation of a highly skilled workforce capable of meeting the demands of modern industry.

The initial chapters provide the importance of specialized instructor training. Following this,
detailed chapters delve into the curriculum covering advanced techniques, safety protocols,
and instructional strategies. Each section is designed to offer both theoretical insights and
practical applications, ensuring a well-rounded understanding of the subject.

The book offers recommendations for overcoming obstacles and enhancing the effectiveness
of the program, with the ultimate goal of producing highly skilled instructors capable of shaping
the future workforce.

This book is intended for a diverse audience, including current and aspiring instructors,
vocational training administrators, policymakers, and industry stakeholders. It serves as a
valuable resource for understanding the intricacies of the subject and its pivotal role in
vocational education.

I extend my heartfelt gratitude to all contributors who have shared their experiences and
expertise, enriching this book with their valuable insights. Special thanks to the contribution of
the development team, reviewers and NIMI that have supported this endeavor, providing
essential data and resources.

It is my sincere hope that this book will inspire and guide readers in their efforts to enhance
vocational training, ultimately contributing to the development of a skilled and competent
workforce.

Foreword

ATUL KUMAR TIWARI, I.A.S.
Secretary, MSDE

ATUL KUMAR TIWARI, I.A.S.
Secretary

अतुल कुमार ितवारी, I.A.S.

सिचव GOVERNMENT OF INDIA
MINISTRY OF SKILL DEVELOPMENT

AND ENTREPRENEURSHIP

© NIMI

NOT TO BE REPUBLISHED

vivi

© NIMI

NOT TO BE REPUBLISHED

vii

The Craft Instructor Training Scheme is an indispensable module of the Craftsmen
Training Scheme, which has been an integral part of the Indian skill development
industry since its inception. This program aims to equip instructors with the necessary
skills and teaching methodology to effectively transfer hands-on skills to trainees and
promote a holistic learning experience. The first Craft Instructor Training Institute
was established in 1948, followed by six more institutes across India in 1960. Today,
these institutes, including the National Skill Training Institute (formerly Central Training
Institute for Instructors), offer the CITS course, which is mandated by the Directorate
General of Training (DGT).

The Craft Instructor training program is designed to develop skilled manpower
for industries. The course aims to offer instructors an opportunity to improve their
instructional skills, engage learners effectively, offer impactful mentoring, and make
efficient use of resources, leading to a more skilled workforce in various industries. The
program emphasizes collaborative and innovative approaches to teaching, resulting in
high-quality course delivery. Overall, the Craft Instructor Training Scheme is a pivotal
program that helps instructors grow in their careers and make a significant contribution
to society. This program is essential for developing skilled manpower and promoting a
robust learning environment that benefits both trainees and instructors alike.

PREFACE

vi

© NIMI

NOT TO BE REPUBLISHED

viii

ACKNOWLEDGEMENT

National Instructional Media Institute (NIMI) sincerely acknowledges with thanks for the
co-operation and contribution extended by the following experts to bring out this Instructional
material (Trade Practical) for CITS Computer Software Application (Volume - II of II)
(NSQF Level - 4) under the IT & ITES Sector for Instructors.

MEDIA DEVELOPMENT COMMITTEE MEMBERS

 Smt. P.A. Sulabha - Training Officer,
 NSTI (W), Trivandrum, Kerala.

 Shri. M.K. Sunil - Training Officer,
 NSTI, Chennai.

 COORDINATORS

 Shri. G.C. Ramamurthy - Joint Director,
 CD - Section, DGT.

 Shri. T.V. Rajasekar - Joint Director,
 NIMI, Chennai.

 Shri. Shiv Kumar - Training Officer,
 CD - Section, DGT.

NIMI records its appreciation of the Data Entry, CAD, DTP Operators for their excellent and
devoted services in the process of development of this Instructional Material.

NIMI also acknowledges with thanks, the invaluable efforts rendered by all other staff who have
contributed for the development of this Instructional Material.

NIMI is grateful to all others who have directly or indirectly helped in developing this IMP.

© NIMI

NOT TO BE REPUBLISHED

ix

ABOUT THE TEXT BOOK

The Vocational Instructor Training Program is a comprehensive initiative designed to equip
aspiring students with the necessary skills and knowledge to effectively teach in vocational
education settings. This program encompasses a range of pedagogical strategies, instructional
techniques, and subject-specific content tailored to the diverse vocational fields. Participants
engage in coursework that covers curriculum development, assessment methods, classroom
management, and the integration of industry-relevant technologies. Practical experience and
hands-on training are emphasized, allowing participants to apply theoretical concepts in real-
world teaching environments. Through collaborative learning experiences and mentorship
opportunities, aspiring vocational instructors develop the confidence and competence to
facilitate engaging and impactful learning experiences for their students. This training program
aims to cultivate a new generation of educators who are not only proficient in their respective
vocational fields but also adept at fostering the success and employability of their students in
today’s competitive workforce.

This text book covers communication, self-management, information and communication
technology, entrepreneurial and green skills. It has been developed as per the learning
outcome-based curriculum.

 G C Rama Murthy,
 Joint Director,
 Curriculum Development, DGT,
 MSDE, New Delhi.

© NIMI

NOT TO BE REPUBLISHED

x

 Ex. No. Table of Contents Page No.

 Module 6: Objective oriented programming and
 JAVA language
 78 Installing JAVA 1

 79 Setting the Class path 3

 80 Writing and Executing a simple JAVA Program to display “Hello”. 8

 81 Use various data types in JAVA. 11

 82 Use various operators in JAVA. 14

 83 Create and use Local, Instance and Class variables. 25

 84 Read text from the keyboard using scanner class read text from the
 keyboard using console class. 28

 85 Use the if and if … else statements. 36

 86 Use the Switch statement. 42

 87 Use the Do … While and while – do loops. 46

 88 Use the For Loop. 50

 89 Use the Break and Continue Keywords. 52

 90 Use the JAVA Numbers Class methods. 54

 91 Use the JAVA Character Class methods. 60

 92 Use the JAVA String Class methods. 63

 93 Create and use arrays. 67

 94 Create and use simple classes, objects and methods in JAVA. 84

 95 Pass data and Objects to Methods. 92

 96 Return data and Objects from Methods. 105

 97 use constructors in JAVA 109

 98 Create and use Overloaded methods in JAVA. 121

 99 Override methods in JAVA. 127

 100 Create and use Super class, Sub class in JAVA. 133

 101 Create and run a thread. 139

 102 Create a thread by extending Thread class 141

 103 Create thread by implementing Runnable interface. 143

 104 Use major thread methods. 146

 105 Test multithreading with and without synchronization. 152

 106 Handle common exceptions. 155

 107 Use multiple try – catch blocks. 157

 108 Use the “throw” and “finally” keywords handle user defined exceptions. 158

 109 Create and use virtual methods. 161

CONTENT

© NIMI

NOT TO BE REPUBLISHED

xi

 Ex. No. Table of Contents Page No.

 110 Create abstract classes and methods. 163

 111 Create interfaces in JAVA. 168

 112 Override methods in JAVA. 173

 113 Create and implement an interface. 177

 114 Extend interfaces in JAVA. 180

 115 Create and use a package in JAVA. 184

 116 Create a simple container using Frame class and extending another
 Frame class. 188

 117 Create a container with a few controls. 198

 118 Create a container with controls with action listeners and event handlers. 204

 119 Create a GUI to draw different plane shapes over a predefined area. 209

 Module 7: Programming Language (Python)

 120 Install, set up the environment & run Python. 217

 121 Use Command Line and IDE to create and execute a python program. 221

 122 Write and test a python program to demonstrate print statement, comments,
 different types of variables. 226

 123 Write and test a python program to perform data and data type operations,
 string operations, date, input and output, output formatting and operators. 230

 124 Determine the sequence of execution based on operator precedence. 236

 125 Construct and analyze code segments that use branching statements. 239

 126 Construct and analyze code segments that perform iteration. 245

 127 Document code segments using comments and documentation strings. 251

 128 Write program in python using list, tuples, dictionaries and files. 254

 129 Write a python program depicting argument passing and using tuples,
 dictionaries arguments. 267

 130 Write a python program for importing a module. 270

 131 Use exception handling in python program. 273

 132 Write a python program to use built in functions i.e. chr, cmp, compile, dir, eval,
 filter, hash, input, len, locals, long, max, pow, range, slice, tuple, Unicode, vars. 277

 133 Write a python program to read and write into a file. 286

 134 Write a python program depicting argument passing and using tuples,
 dictionaries as arguments. 290

 135 Construct and analyze code segments that include List comprehensions,
 tuple, set and Dictionary comprehensions. 292

 136 Perform basic operations using built-in modules. 297

 137 Solve complex computing problems by using built-in modules. 301

© NIMI

NOT TO BE REPUBLISHED

xii

© NIMI

NOT TO BE REPUBLISHED

1

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 78 : Installing JAVA

At the end of this exercise you shall be able to
• download JDK Software
• install JDK.

Tools/Materials
• PC/Laptop with Windows OS
• JDK Software
• Text Editor (Visual Studio/Sublime/Notepad)

Requirements

Procedure
 First ensure that you have Java Development Kit (JDK) installed on your machine. You can download the latest

JDK from the official Oracle website or use an open-source distribution like Open JDK. For example,

 Installing JDK 21.0.2 on a Windows system:

1 Download JDK 21.0.2
• Go to the Oracle JDK download page or an official source where JDK 21.0.2 is available for download.

• Accept the license agreement and choose the appropriate JDK package for your Windows system. Make
sure to select the correct platform (e.g., Windows x64).

2 Run the Installer
• Once the download completes, locate the downloaded JDK installer file (e.g., jdk-21.0.2_windows-x64_bin.

exe).

• Double-click on the installer file to run it.

3 Start JDK Installation

Module 6 : Object Oriented Programming and JAVA
Language

© NIMI

NOT TO BE REPUBLISHED

2

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 78

• The installer will launch. Click “Next” to begin the installation process.

4 Choose Installation Location:

• Choose the directory where you want to install JDK 21.0.2. The default location is typically C:\Program
Files\Java\jdk-21.0.2.

5 Install JDK:
• Click “Next” to proceed with the installation.

6 Installation Progress

• The installer will start copying files and installing JDK components. This process may take a few minutes
depending on your system’s speed.

7 Completing the JDK Installation:

• Once the installation completes, you will see a confirmation screen. Click “Close” to exit the installer.

© NIMI

NOT TO BE REPUBLISHED

3

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 79 : Setting the Class Path

At the end of this exercise you shall be able to
• environment Variable/ Path Setting in Java
• system Variable Setting in Java
• verify JDK installation through Command Prompt
• check the version of Java installed in your system.

Tools/Materials
• PC/Laptop with Windows OS
• JDK Software
• Text Editor (Visual Studio/Sublime/Notepad).

Requirements

 Step1: Set JAVA_HOME Environment Variable

After installing JDK 21.0.2, you may want to set the JAVA_HOME environment variable to point to the JDK
installation directory. This step is optional but can be useful for some development tools and applications.

• Right-click on “This PC” or “Computer” and select “Properties.

Procedure

CITS : IT & ITES - Computer Software Application - Exercise 78

© NIMI

NOT TO BE REPUBLISHED

4

COMPUTER SOFTWARE APPLICATION - CITS

• Click on “Advanced system settings” on the left.

• Click the “Environment Variables” button.

• Set User Variable, click the new button.

• Set the path as shown below.

CITS : IT & ITES - Computer Software Application - Exercise 79

© NIMI

NOT TO BE REPUBLISHED

5

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 79CITS : IT & ITES - Computer Software Application - Exercise 79

© NIMI

NOT TO BE REPUBLISHED

6

COMPUTER SOFTWARE APPLICATION - CITS

• To Set the system variable click on new button under the ‘system variables’.

• Type the variable the name and set the path as follows.

CITS : IT & ITES - Computer Software Application - Exercise 79

© NIMI

NOT TO BE REPUBLISHED

7

COMPUTER SOFTWARE APPLICATION - CITS

• Under “System Variables,” click “New” and add a variable named JAVA_HOME with the value set to the JDK
installation directory (e.g., C:\Program Files\Java\jdk-21.0.2\bin).

• Click “OK” to save the changes.

1 Verify JDK Installation:

• Open a new Command Prompt window and type java -version. This should display the version of Java installed,
confirming that JDK 21.0.2 is installed correctly.

• Also, type javac -version to verify that the Java compiler is installed and accessible.

That’s it! You have successfully installed JDK 21.0.2 on your Windows system. You can now start developing and
running Java applications.

CITS : IT & ITES - Computer Software Application - Exercise 79CITS : IT & ITES - Computer Software Application - Exercise 79

© NIMI

NOT TO BE REPUBLISHED

8

COMPUTER SOFTWARE APPLICATION - CITS

EXERCISE 80 : Writing and Executing a simple JAVA
Program to display “Hello”

Objectives
At the end of this exercise you shall be able to
• develop a Simple Java Program
• compile and Execute the Java Program.

Tools/Materials
• PC/Laptop with Windows OS
• JDK Software
• Text Editor (Visual Studio/Sublime/Notepad)

Requirements

 Step 1: Open a Text Editor:

• Open a text editor such as Notepad, Notepad++, Visual Studio Code, or any other text editor of your choice.

 Step 2: Write the Java Code:

 Step-by-Step Explanation:
 Step 2.1: Define the Class and Main Method:

• Start by defining a class named Hello. In Java, every program needs to be within a class.

• The class name must match the filename (Hello.java).

Procedure

© NIMI

NOT TO BE REPUBLISHED

9

COMPUTER SOFTWARE APPLICATION - CITS

 Step 2.2: Define the Main Method:

• Inside the class, define the main method. This method is the entry point for Java programs.

Step 2.3: Print “Hello” to the Console:

• Within the main method, use the System.out.println() statement to print. “Hello” to the console.

Step 3: Save the File: Save the file with the name Hello.java.(Filename should be the class name)

Step 4: Compiling the Java Program

1 Open Command Prompt (cmd):
Press Win + R, type cmd, and press Enter to open the Command Prompt.

2 Navigate to the Directory:

Use the cd command to navigate to the directory where Hello.java is saved. For example:

3 Compile the Java File:
In the Command Prompt, type the command javac filename.java and press the Enter key

 If there are no syntax errors in your code, the Java compiler (javac) will create a file named Hello.class in the
same directory.

Step 5: Running the Java Program

After successfully compiling the program, run it using the java command:

CITS : IT & ITES - Computer Software Application - Exercise 80

© NIMI

NOT TO BE REPUBLISHED

10

COMPUTER SOFTWARE APPLICATION - CITS

In the Command Prompt, type the command java filename and press Enter:

This command will execute the Hello class, and you will see “Hello” printed to the console.

Output:

• Related Exercise: Develop a java program to display “ Welcome to Java Programming”.

CITS : IT & ITES - Computer Software Application - Exercise 80

© NIMI

NOT TO BE REPUBLISHED

11

COMPUTER SOFTWARE APPLICATION - CITS

EXERCISE 81 : Use various data types in JAVA

Objectives
At the end of this exercise you shall be able to
• develop Java Programs with various data types
• Compile , Execute and verify the result of the Java Programs.

Tools/Materials
• PC/Laptop with Windows OS
• JDK Software
• Text Editor (Visual Studio/Sublime/Notepad)

Requirements

TASK 1: Write a Java program to declare variables of different primitive data types and print their values
Step 1: Writing the Java Program to display various data type values.

1 Open a Text Editor:
• Open a text editor such as Notepad, Notepad++, Visual Studio Code, or any other text editor of your choice.

2 Write the Java Code:

Procedure

3 Save the File: Save the file with the name PrintDataTypes.java

Step 2: Compiling the Java Program

1 Open Command Prompt (cmd):
 Press Win + R, type cmd, and press Enter to open the Command Prompt.

2 Navigate to the Directory:
 Use the cd command to navigate to the directory where PrintDataTypes.java is saved.

CITS : IT & ITES - Computer Software Application - Exercise 80

© NIMI

NOT TO BE REPUBLISHED

12

COMPUTER SOFTWARE APPLICATION - CITS

If there are no syntax errors in your code, the Java compiler (javac) will create a file named PrintDataTypes.class
in the same directory.

Step 3: Running the Java Program

1 Run the Java Program:

In the Command Prompt, type the command java filename (java PrintDataTypes) and press Enter:
This command executes the main method in the PrintDataTypes class. You should see the values of the variables
printed in the console.
Summary
This Java program declares variables of different primitive data types and prints their values to the console.
Following the steps outlined above will allow you to create and run the program successfully.

TASK 2 : Write a Java program to display all primitive data types
All the steps are same as that of the above program (See the steps of Task 1)
CODE:
public class PrimitiveExample {

 public static void main(String[] args) {

 // Declare variables of different primitive data types

 byte myByte = 10;

 short myShort = 1000;

 int myInt = 100000;

 long myLong = 1000000000L;

 float myFloat = 3.14f;

 double myDouble = 3.14159;

 boolean myBoolean = true;

 char myChar = ‘A’;

 // Print the values of the variables

 System.out.println(“byte: “ + myByte);

 System.out.println(“short: “ + myShort);

 System.out.println(“int: “ + myInt);

 System.out.println(“long: “ + myLong);

 System.out.println(“float: “ + myFloat);

 System.out.println(“double: “ + myDouble);

 System.out.println(“boolean: “ + myBoolean);

CITS : IT & ITES - Computer Software Application - Exercise 81

© NIMI

NOT TO BE REPUBLISHED

13

COMPUTER SOFTWARE APPLICATION - CITS

 System.out.println(“char: “ + myChar);

 }

}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 81CITS : IT & ITES - Computer Software Application - Exercise 81

© NIMI

NOT TO BE REPUBLISHED

14

COMPUTER SOFTWARE APPLICATION - CITS

EXERCISE 82 : Use various operators in JAVA

Objectives
At the end of this exercise you shall be able to
• know the use of various Operators in Java
• develop Java Programs using different operators
• compile , Execute and verify the result of the Java Programs.

Tools/Materials
• PC/Laptop with Windows OS
• JDK Software
• Text Editor (Visual Studio/Sublime/Notepad)

Requirements

TASK 1: Java Unary Operator Example: ++ and –
CODE:
public class OperatorExample1{

public static void main(String args[]){

int x=10;

System.out.println(x++);//10 (11)

System.out.println(++x);//12

System.out.println(x--);//12 (11)

System.out.println(--x);//10

}}

Explanation:
1 Variable Initialization:

• The program begins by initializing an integer variable x with the value 10.

2 Post-increment (x++):
• System.out.println(x++); is a post-increment operation. It prints the current value of x (which is 10) and then

increments x by 1.

• The output is 10 because the current value is printed before the increment.

3 Pre-increment (++x):
• System.out.println(++x); is a pre-increment operation. It increments the value of x by 1 and then prints the

updated value.

• The output is 12 because x was incremented in the previous step.

4 Post-decrement (x--):
• System.out.println(x--); is a post-decrement operation. It prints the current value of x (which is 12) and then

decrements x by 1.

• The output is 12 because the current value is printed before the decrement.

Procedure

© NIMI

NOT TO BE REPUBLISHED

15

COMPUTER SOFTWARE APPLICATION - CITS

5 Pre-decrement (--x):
• System.out.println(--x); is a pre-decrement operation. It decrements the value of x by 1 and then prints the

updated value.

• The output is 10 because x was decremented in the previous step.

Output:

TASK 2: Java Unary Operator Example 2: ++ and --
CODE:
public class OperatorExample2{

public static void main(String args[]){

int a=10;

int b=10;

System.out.println(a++ + ++a);//10+12=22

System.out.println(b++ + b++);//10+11=21

}}

Output :

Explanation:
• The program illustrates the behavior of post-increment and pre-increment operators in expressions.

• Post-increment (a++ or b++) evaluates to the current value before the increment, while pre-increment (++a)
evaluates to the updated value after the increment.

• The output demonstrates the results of the two expressions involving increment operations.

TASK 3: Java Unary Operator Example: ~ and !
public class OperatorExample3{

public static void main(String args[]){

int a=10;

int b=-10;

boolean c=true;

CITS : IT & ITES - Computer Software Application - Exercise 82

© NIMI

NOT TO BE REPUBLISHED

16

COMPUTER SOFTWARE APPLICATION - CITS

boolean d=false;

System.out.println(~a);//-11 (minus of total positive value which starts from 0)

System.out.println(~b);//9 (positive of total minus, positive starts from 0)

System.out.println(!c);//false (opposite of boolean value)

System.out.println(!d);//true

}}

Explanation:
1 Variable Initialization:

• The program begins by initializing two integer variables a and b with the values 10 and -10, respectively.

• It also initializes two boolean variables c and d with the values true and false, respectively.

2 Bitwise Complement (~):
• System.out.println(~a);

• The bitwise complement (~) operator inverts the bits of the integer a.

• In binary representation, -11 is the two’s complement of 10.

• The output is -11, which is the result of inverting the bits of 10.

• System.out.println(~b);

• The bitwise complement (~) operator inverts the bits of the integer b.

• In binary representation, 9 is the two’s complement of -10.

• The output is 9, which is the result of inverting the bits of -10.

3 Logical NOT (!):
• System.out.println(!c);

• The logical NOT (!) operator negates the boolean value of c.

• The output is false, which is the result of negating the boolean value true.

• System.out.println(!d);

• The logical NOT (!) operator negates the boolean value of d.

• The output is true, which is the result of negating the boolean value false.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 82

© NIMI

NOT TO BE REPUBLISHED

17

COMPUTER SOFTWARE APPLICATION - CITS

TASK 4: Java Arithmetic Operator Example
public class OperatorExample4{

public static void main(String args[]){

int a=10;

int b=5;

System.out.println(a+b);//15

System.out.println(a-b);//5

System.out.println(a*b);//50

System.out.println(a/b);//2

System.out.println(a%b);//0

}}

Output:

TASK 5: Java Arithmetic Operator Example: Expression
public class OperatorExample5{

public static void main(String args[]){

System.out.println(10*10/5+3-1*4/2);

}}

Explanation:
1 Arithmetic Expression:

• The program consists of a single arithmetic expression within the System.out.println statement.

2 Order of Operations (BODMAS/BIDMAS):
• The arithmetic expression follows the order of operations (also known as BODMAS or BIDMAS), which

stands for:

• Brackets or Parentheses

• Orders (i.e., powers and square roots, etc.)

• Division and Multiplication (from left to right)

• Addition and Subtraction (from left to right)

CITS : IT & ITES - Computer Software Application - Exercise 82CITS : IT & ITES - Computer Software Application - Exercise 82

© NIMI

NOT TO BE REPUBLISHED

18

COMPUTER SOFTWARE APPLICATION - CITS

3 Arithmetic Operations:
• The expression 10 * 10 / 5 + 3 - 1 * 4 / 2 involves multiplication (*), division (/), addition (+),and subtraction

(-) operations.

4 Step-by-Step Evaluation:
10 * 10 / 5 + 3 - 1 * 4 / 2

• Multiply: 100 / 5 + 3 - 1 * 4 / 2

• Divide: 20 + 3 - 1 * 4 / 2

• Multiply: 20 + 3 - 4 / 2

• Divide: 20 + 3 - 2

• Add: 23 - 2

• Subtract: 21

Output:

TASK 6: Java Left Shift Operator Example
public class OperatorExample6{

public static void main(String args[]){

System.out.println(10<<2);//10*2^2=10*4=40

System.out.println(10<<3);//10*2^3=10*8=80

System.out.println(20<<2);//20*2^2=20*4=80

System.out.println(15<<4);//15*2^4=15*16=240

}}

Explanation:
1 Left Shift Operator (<<):

• The left shift operator (<<) shifts the bits of a binary number to the left by a specified number of positions.

• The general form is value << numBits, where value is the number to be shifted, and num Bits is the number
of positions to shift.

2 Bitwise Left Shift Operations:
• The program performs left shift operations on various integers.

3 Examples:
• System.out.println(10 << 2);

• Left shift the binary representation of 10 by 2 positions.

• 10 in binary is 1010. After left shifting by 2, it becomes 101000, which is 40 in decimal.

• Output: 40

CITS : IT & ITES - Computer Software Application - Exercise 82

© NIMI

NOT TO BE REPUBLISHED

19

COMPUTER SOFTWARE APPLICATION - CITS

• System.out.println(10 << 3);

• Left shift the binary representation of 10 by 3 positions.

• After left shifting by 3, 10 becomes 1010000, which is 80 in decimal.

• Output: 80

• System.out.println(20 << 2);

• Left shift the binary representation of 20 by 2 positions.

• After left shifting by 2, 20 becomes 101000, which is 80 in decimal.

• Output: 80

• System.out.println(15 << 4);

• Left shift the binary representation of 15 by 4 positions.

• After left shifting by 4, 15 become 11110000, which is 240 in decimal.

• Output: 240

Output:

TASK 7: Java Right Shift Operator Example
public class OperatorExample7{

public static void main(String args[]){

System.out.println(10>>2);//10/2^2=10/4=2

System.out.println(20>>2);//20/2^2=20/4=5

System.out.println(20>>3);//20/2^3=20/8=2

}}

Explanation:
1 Right Shift Operator (>>):

• The right shift operator (>>) shifts the bits of a binary number to the right by a specified number of positions.

• The general form is value >> numBits, where value is the number to be shifted, and numBits is the number
of positions to shift.

2 Bitwise Right Shift Operations:
• The program performs right shift operations on various integers.

CITS : IT & ITES - Computer Software Application - Exercise 82CITS : IT & ITES - Computer Software Application - Exercise 82

© NIMI

NOT TO BE REPUBLISHED

20

COMPUTER SOFTWARE APPLICATION - CITS

3 Examples:
• System.out.println(10 >> 2);
• Right shift the binary representation of 10 by 2 positions.
• 10 in binary is 1010. After right shifting by 2, it becomes 10, which is 2 in decimal.
• Output: 2
• System.out.println(20 >> 2);
• Right shift the binary representation of 20 by 2 positions.
• After right shifting by 2, 20 becomes 5 in decimal.
• Output: 5
• System.out.println(20 >> 3);
• Right shift the binary representation of 20 by 3 positions.
• After right shifting by 3, 20 becomes 2 in decimal.
• Output: 2

Output:

TASK 8: Java Shift Operator Example: >>vs>>>
public class OperatorExample8{

public static void main(String args[]){

 //For positive number, >> and >>> works same

 System.out.println(20>>2);

 System.out.println(20>>>2);

 //For negative number, >>> changes parity bit (MSB) to 0

 System.out.println(-20>>2);

 System.out.println(-20>>>2);

}}

Explanation:
1 Right Shift Operator (>>):

• The right shift operator (>>) shifts the bits of a binary number to the right by a specified number of positions.

• For positive numbers, the vacant leftmost positions are filled with the sign bit (MSB, Most Significant Bit).

2 Unsigned Right Shift Operator (>>>):
• The unsigned right shift operator (>>>) also shifts the bits to the right, but it fills the vacant leftmost positions

with zeros, irrespective of the sign bit.

• It treats the number as if it were an unsigned quantity.

CITS : IT & ITES - Computer Software Application - Exercise 82

© NIMI

NOT TO BE REPUBLISHED

21

COMPUTER SOFTWARE APPLICATION - CITS

3 Bitwise Right Shift Operations:
• The program performs both right shift (>>) and unsigned right shift (>>>) operations on both positive and

negative numbers.

4 Examples:
• System.out.println(20 >> 2);

• Right shift the binary representation of 20 by 2 positions using the >> operator.

• After right shifting by 2, 20 becomes 5 in decimal.

• Output: 5

• System.out.println(20 >>> 2);

• Unsigned right shift the binary representation of 20 by 2 positions using the >>> operator.

• After unsigned right shifting by 2, 20 becomes 5 in decimal.

• Output: 5

• System.out.println(-20 >> 2);

• Right shift the binary representation of -20 by 2 positions using the >> operator.

• For negative numbers, the vacant leftmost positions are filled with the sign bit (1), and -20 becomes -5 in
decimal.

• Output: -5

• System.out.println(-20 >>> 2);

• Unsigned right shift the binary representation of -20 by 2 positions using the >>> operator.

• The unsigned right shift fills the vacant leftmost positions with 0, and -20 becomes a positive integer
(1073741819 in decimal).

• Output: 1073741819

Output:

TASK 9: Java AND Operator Example: Logical && and Bitwise &
public class OperatorExample9{

public static void main(String args[]){

int a=10;

int b=5;

int c=20;

System.out.println(a<b&&a<c);//false && true = false

System.out.println(a<b&a<c);//false & true = false

}}

CITS : IT & ITES - Computer Software Application - Exercise 82CITS : IT & ITES - Computer Software Application - Exercise 82

© NIMI

NOT TO BE REPUBLISHED

22

COMPUTER SOFTWARE APPLICATION - CITS

Output:

TASK 10: Java OR Operator Example: Logical || and Bitwise |
public class OperatorExample10{

public static void main(String args[]){

int a=10;

int b=5;

int c=20;

System.out.println(a>b||a<c);//true || true = true

System.out.println(a>b|a<c);//true | true = true

//|| vs |

System.out.println(a>b||a++<c);//true || true = true

System.out.println(a);//10 because second condition is not checked

System.out.println(a>b|a++<c);//true | true = true

System.out.println(a);//11 because second condition is checked

}}

Output:

TASK 11: Java Ternary Operator Example
public class OperatorExample11{

public static void main(String args[]){

int a=2;

int b=5;

int min=(a<b)?a:b;

System.out.println(min);

}}

CITS : IT & ITES - Computer Software Application - Exercise 82

© NIMI

NOT TO BE REPUBLISHED

23

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:
1 Ternary Conditional Operator (? :):

• The ternary conditional operator is a shorthand way of writing an if-else statement.

• The general form is condition ? expression1 : expression2.

• If the condition is true, it evaluates to expression1; otherwise, it evaluates to expression2.

2 Program Logic:
• The program defines two integer variables a and b with values 2 and 5, respectively.

• It uses the ternary conditional operator to find the minimum of a and b.

• The condition (a < b) is evaluated. If true, a is assigned to min; otherwise, b is assigned to min.

• The minimum value is then printed to the console.

3 Example:
• int min = (a < b) ? a : b;

• The condition (a < b) is true (2 is less than 5).

• Therefore, min is assigned the value of a (2).

• Output: 2

Output:

TASK 12: Java Assignment Operator Example
public class OperatorExample12{

public static void main(String args[]){

int a=10;

int b=20;

a+=4;//a=a+4 (a=10+4)

b-=4;//b=b-4 (b=20-4)

System.out.println(a);

System.out.println(b);

}}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 82CITS : IT & ITES - Computer Software Application - Exercise 82

© NIMI

NOT TO BE REPUBLISHED

24

COMPUTER SOFTWARE APPLICATION - CITS

TASK 13: Java Assignment Operator Example
public class OperatorExample13{

public static void main(String[] args){

int a=10;

a+=3;//10+3

System.out.println(a);

a-=4;//13-4

System.out.println(a);

a*=2;//9*2

System.out.println(a);

a/=2;//18/2

System.out.println(a);

}}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 82

© NIMI

NOT TO BE REPUBLISHED

25

COMPUTER SOFTWARE APPLICATION - CITS

EXERCISE 83 : Create and use Local, Instance and Class
variables

Objectives
At the end of this exercise you shall be able to
• know the use of various Local, Instance and Class variables
• develop Java Programs using different Local, Instance and Class variables
• compile , Execute and verify the result of the Java Programs.

Tools/Materials
• PC/Laptop with Windows OS
• JDK Software

Requirements

 Text Editor (Visual Studio/Sublime/Notepad)
TASK 1 : Local Variables Example
public class VariableExample1 {

 public static void main(String[] args) {

 calculateSum(5, 7);

 }

 static void calculateSum(int a, int b) {

 // Local variable: sum

 int sum = a + b;

 System.out.println(“Sum: “ + sum);

 }

}

Output:

Procedure

TASK 2: Instance Variables Example
public class VariableExample2 {

 public static void main(String[] args) {

 // Create an instance of the Student class

 Student myStudent = new Student();

CITS : IT & ITES - Computer Software Application - Exercise 82

© NIMI

NOT TO BE REPUBLISHED

26

COMPUTER SOFTWARE APPLICATION - CITS

 // Set values to instance variables

 myStudent.name = “Alice”;

 myStudent.age = 20;

 // Display student information

 myStudent.displayStudentInfo();

 }

}

class Student {

 // Instance variables: name and age

 String name;

 int age;

 // Instance method to display student information

 void displayStudentInfo() {

 System.out.println(“Name: “ + name);

 System.out.println(“Age: “ + age);

 }

}

Output:

TASK 3: Class Variables Examples

public class VariableExample3 {

 public static void main(String[] args) {

 // Access the class variable directly

 System.out.println(“Default Interest Rate: “ + Bank.defaultInterestRate);

 // Change the class variable

 Bank.defaultInterestRate = 3.5;

 // Access the class variable through an instance

 Bank myBank = new Bank();

 System.out.println(“Updated Interest Rate: “ + myBank.defaultInterestRate);

 }

}

CITS : IT & ITES - Computer Software Application - Exercise 83

© NIMI

NOT TO BE REPUBLISHED

27

COMPUTER SOFTWARE APPLICATION - CITS

class Bank {

 // Class variable: defaultInterestRate

 static double defaultInterestRate = 2.5;

}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 83CITS : IT & ITES - Computer Software Application - Exercise 83

© NIMI

NOT TO BE REPUBLISHED

28

COMPUTER SOFTWARE APPLICATION - CITS

EXERCISE 84 : Read text from the keyboard using scanner
 class/ read text from the keyboard using
 console class

Objectives
At the end of this exercise you shall be able to
• should know the use of scanner class/console class
• develop java programs using scanner class/console clas
• Compile, execute and verify the result of the Java Programs.

Tools/Materials
• PC/Laptop with Windows OS
• JDK Software
• Text Editor (Visual Studio/Sublime/Notepad)

Requirements

TASK 1: Reading Text with Scanner Class Example_1
import java.util.Scanner;

public class ScannerExample {

 public static void main(String[] args) {

 // Create a Scanner object

 Scanner scanner = new Scanner(System.in);

 // Prompt the user to enter a name

 System.out.print(“Enter your name: “);

 // Read the entered text as a String

 String name = scanner.nextLine();

 // Display a greeting

 System.out.println(“Hello, “ + name + “!”);

 // Close the Scanner

 scanner.close();

 }

}

Step 1: Importing the Scanner Class

Procedure

This line imports the Scanner class from the java.util package. The Scanner class is used for obtaining user input
from the keyboard.

© NIMI

NOT TO BE REPUBLISHED

29

COMPUTER SOFTWARE APPLICATION - CITS

Step 2: Declaring the Class

This line declares a public class named ScannerExample. All Java applications must have a class with a main
method, and this is the starting point of the program.

Step 3: Declaring the main Method

This line declares the main method, which is the entry point of the Java program. The method takes an array of
String arguments (args), though in this case, it is not used.

Step 4: Creating a Scanner Object

This line creates a new Scanner object named scanner that reads input from the standard input stream (System.
in), which represents the keyboard.

Step 5: Prompting User Input

This line prints the prompt “Enter your name: “ to the console, prompting the user to enter their name.

Step 6: Reading User Input

This line uses the nextLine method of the Scanner class to read the entire line of text entered by the user. The
entered text is then stored in the String variable name.

Step 7: Displaying Output

CITS : IT & ITES - Computer Software Application - Exercise 84

© NIMI

NOT TO BE REPUBLISHED

30

COMPUTER SOFTWARE APPLICATION - CITS

This line prints a greeting message to the console, incorporating the user’s entered name. The println method is
used to print the message and move to the next line.

Step 8: Closing the Scanner

This line closes the Scanner object to release associated resources. It’s good practice to close the Scanner when
it’s no longer needed.

Step 9: End of the Program

This closing brace marks the end of the main method and the end of the ScannerExample class.

Output:

Summary:

• The program starts by importing the Scanner class.

• It creates a Scanner object to read input from the keyboard.

• It prompts the user to enter their name, reads the input, and stores it in a variable.

• It displays a greeting message incorporating the user’s name.

• Finally, it closes the Scanner object.

TASK 2: Reading Multiple Inputs with Scanner Class Example_2
import java.util.Scanner;

public class SumOfTwoNumbers {

 public static void main(String[] args) {

 // Create a Scanner object to read input

 Scanner scanner = new Scanner(System.in);

 // Prompt the user to enter the first number

 System.out.print(“Enter the first number: “);

 // Read the first number from the user

 double num1 = scanner.nextDouble();

CITS : IT & ITES - Computer Software Application - Exercise 84

© NIMI

NOT TO BE REPUBLISHED

31

COMPUTER SOFTWARE APPLICATION - CITS

// Prompt the user to enter the second number

 System.out.print(“Enter the second number: “);

 // Read the second number from the user

 double num2 = scanner.nextDouble();

 // Close the Scanner to avoid resource leak

 scanner.close();

 // Calculate the sum of the two numbers

 double sum = num1 + num2;

 // Display the result

 System.out.println(“The sum of “ + num1 + “ and “ + num2 + “ is: “ + sum);

 }

}

Output:

TASK 3: Reading Multiple Inputs with Scanner Class Example_3
import java.util.Scanner;

public class ScannerExample3 {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 // Prompt the user to enter age and city

 System.out.print(“Enter your age: “);

 int age = scanner.nextInt();

 // Consume the newline character left by nextInt

 scanner.nextLine();

 System.out.print(“Enter your city: “);

 String city = scanner.nextLine();

 // Display user information

 System.out.println(“You are “ + age + “ years old and you live in “ + city);

 // Close the Scanner

 scanner.close();

 }

}

CITS : IT & ITES - Computer Software Application - Exercise 84CITS : IT & ITES - Computer Software Application - Exercise 84

© NIMI

NOT TO BE REPUBLISHED

32

COMPUTER SOFTWARE APPLICATION - CITS

Output:

TASK 4: Reading a floating-point number with Scanner Class Example_4
import java.util.Scanner;

public class ScannerExample4 {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 // Prompt the user to enter a floating-point number

 System.out.print(“Enter a floating-point number: “);

 double floatingPointNumber = scanner.nextDouble();

 // Display the entered number

 System.out.println(“You entered: “ + floatingPointNumber);

 // Close the Scanner

 scanner.close();

 }

}

Output:

TASK 5: Reading Text with Console Class Example_1
import java.io.Console;

public class ConsoleExample1 {

 public static void main(String[] args) {

 // Get the Console object

 Console console = System.console();

 if (console == null) {

 System.out.println(“Console not available. Exiting...”);

 System.exit(1);

CITS : IT & ITES - Computer Software Application - Exercise 84

© NIMI

NOT TO BE REPUBLISHED

33

COMPUTER SOFTWARE APPLICATION - CITS

 }

 // Prompt the user to enter a city

 String city = console.readLine(“Enter your favorite city: “);

 // Display the entered city

 System.out.println(“Your favorite city is: “ + city);

 }

}

Step 1: Import Console Class

Explanation:
• The import java.io.Console; statement is used to import the Console class from the java.io package.

• The Console class provides methods for interacting with the console, allowing secure input without echoing
characters (useful for reading sensitive information like passwords).

Step 2: Define Class and Main Method

Explanation:

• The code defines a class named ConsoleExample1.

• Inside the class, there is the main method, which serves as the entry point of the program. The main method
is the first method that gets executed when the program runs.

Step 3: Get Console Object

Explanation:

• The System.console() method is used to obtain a reference to the console.

• If the console is not available (for example, if the program is running in an environment without a console, such
as some IDEs), the method returns null.

Step 4: Check for Console Availability

CITS : IT & ITES - Computer Software Application - Exercise 84CITS : IT & ITES - Computer Software Application - Exercise 84

© NIMI

NOT TO BE REPUBLISHED

34

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:
• The program checks whether the console object is null.

• If console is null, it means that the console is not available, and the program prints an error message.

• The System.exit(1); statement is used to exit the program with a status code of 1, indicating an abnormal
termination.

Step 5: Prompt the User to Enter a City

Explanation:
• The console.readLine(“Enter your favorite city: “); statement prompts the user to enter their favorite city.

• The readLine method of the Console class is used to read a line of text from the console. It displays the
specified prompt and waits for the user to enter input.

• The entered text is then assigned to the variable city.

Step 6: Display the Entered City

Explanation:
• After the user enters their favorite city, the program displays the entered city using the System.out.println

statement.

• The println method is used to print the message “Your favorite city is: “ followed by the value stored in the city
variable.

• This line effectively prints the user’s favorite city to the console.

Output:

TASK 6: Reading Password with Console Class Example_2
import java.io.Console;

public class ConsoleExample2 {

 public static void main(String[] args) {

 Console console = System.console();

CITS : IT & ITES - Computer Software Application - Exercise 84

© NIMI

NOT TO BE REPUBLISHED

35

COMPUTER SOFTWARE APPLICATION - CITS

 if (console == null) {

 System.out.println(“Console not available. Exiting...”);

 System.exit(1);

 }

 // Read a password without displaying it on the console

 char[] passwordChars = console.readPassword(“Enter your password: “);

 String password = new String(passwordChars);

 // Display a confirmation message

 System.out.println(“Password entered: “ + password);

 }

}

Output:

Related Exercises:
Question1: Create a program that stores information about your favorite book. Use appropriate data types for
the title (String), author (String), publication year (int), and price (double). Display the book details on the console.

Question 2: Write a program to calculate the area and perimeter of a rectangle. Prompt the user to enter the
length and width using the Scanner class and display the result.

Question 3: Design a class representing a basic bank account. Use instance variables to store the account
holder’s name, account number, and balance. Implement a method to deposit money into the account and display
the updated balance.

Question 4: Develop a program that reads the user’s Name, Age, and favorite color using the Scanner class and
display it.

Question 5: Develop a program to perform all Simple Arithmetic Operations.

Question 6: Create a program to Swap two numbers.

Question 7: Develop a program to convert the temperature in Celsius to Fahrenheit

Question 8: Create program to calculate area and circumference of a circle.

Question 9: Develop a program to calculate the interest (I=PNR where P=Principle Amount,N=No. of years,
R=Rate of interest)

Question 10: Develop a program to display the Product Details (Read Product_Code, Product_Name,Unit_Price
and Quantity. Calculate the Total_Price).

CITS : IT & ITES - Computer Software Application - Exercise 84CITS : IT & ITES - Computer Software Application - Exercise 84

© NIMI

NOT TO BE REPUBLISHED

36

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 85 : Use the if and if … else statements

At the end of this exercise you shall be able to
•	 know	the	different		syntax	and	use	of	if	Statements	(simple	if	,	if…else,	elseif	ladder,	nested	if	statements)
•	 develop	java	programs	using	if	statement.

Tools/Materials
•		 PC/Laptop	with	Window	OS	
•		 JDK	Software
•	 Text	editor	(Visual	studio	/	Sublime	/	Note	pad)

Requirements

Procedure
	 TASK	1:	Checking if a number is even or odd

import	java.util.Scanner;

public	class	EvenOddChecker	{

public	static	void	main(String[]	args)	{

								Scanner	scanner	=	new	Scanner(System.in);

System.out.print(“Enter	a	number:	“);

int	number	=	scanner.nextInt();

if	(number	%	2	==	0)	{

System.out.println(number	+	“	is	an	even	number.”);

								}	else	{

System.out.println(number	+	“	is	an	odd	number.”);

 }

scanner.close();

 }

 }

Explanation:
	 This	Java	program,	named	EvenOddChecker,	is	designed	to	determine	whether	a	given	input	number	is	even	or	

odd.	Here’s	how	it	works:

1	 The	program	starts	by	importing	the	Scanner	class	from	the	java.util	package.	The	Scanner	class	allows	user	
input	from	the	console.

2	 The	EvenOddChecker	class	contains	the	main	method,	which	is	the	entry	point	of	the	program.

3	 Inside	the	main	method:

•	 It	creates	a	new	Scanner	object	named	scanner	to	read	input	from	the	console.

•	 It	prompts	the	user	to	enter	a	number	by	displaying	the	message	“Enter	a	number:	“.

© NIMI

NOT TO BE REPUBLISHED

37

COMPUTER SOFTWARE APPLICATION - CITS

•	 It	reads	the	integer	input	provided	by	the	user	using	the	nextInt()	method	of	the	Scanner	class	and	stores	it	in	
the	variable	number.

4	 The	program	then	checks	whether	the	entered	number	is	even	or	odd	using	the	modulo	operator	%.

•	 If	the	remainder	of	number	divided	by	2	is	equal	to	0,	then	the	number	is	even.

•	 If	the	remainder	is	not	equal	to	0,	then	the	number	is	odd.

5	 Depending	on	the	result	of	the	check,	the	program	prints	out	a	message	indicating	whether	the	number	is	even	
or	odd.

6	 Finally,	the	scanner	object	is	closed	to	release	system	resources	after	it’s	no	longer	needed.

Output:

TASK	2:	Checking if a person is eligible to vote
import	java.util.Scanner;

public	class	VotingEligibilityCheck	{

public	static	void	main(String[]	args)	{

								Scanner	scanner	=	new	Scanner(System.in);

System.out.print(“Enter	your	age:	“);

int	age	=	scanner.nextInt();

if	(age	>=	18)	{

System.out.println(“You	are	eligible	to	vote.”);

								}	else	{

System.out.println(“You	are	not	eligible	to	vote	yet.”);

 }

scanner.close}}

Explanation:
	 This	Java	program,	named	VotingEligibilityCheck,	determines	whether	a	person	is	eligible	to	vote	based	on	their	

age.	Here’s	a	brief	explanation	of	how	it	works:

1	 The	program	starts	by	importing	the	Scanner	class	from	the	java.util	package,	which	allows	user	input	from	the	
console.

2	 The	VotingEligibilityCheck	class	contains	the	main	method,	which	serves	as	the	entry	point	of	the	program.

CITS : IT & ITES - Computer Software Application - Exercise 85

© NIMI

NOT TO BE REPUBLISHED

38

COMPUTER SOFTWARE APPLICATION - CITS

3	 Inside	the	main	method:

•	 It	creates	a	new	Scanner	object	named	scanner	to	read	input	from	the	console.

•	 It	prompts	the	user	to	enter	their	age	by	displaying	the	message	“Enter	your	age:	“.

•	 It	reads	the	integer	input	provided	by	the	user	using	the	nextInt()	method	of	the	Scanner	class	and	stores	it	in	
the	variable	age.

4.	 The	program	then	checks	whether	the	entered	age	is	greater	than	or	equal	to	18,	the	legal	voting	age	in	many	
countries.

•	 If	the	age	is	18	or	older,	it	prints	“You	are	eligible	to	vote.”

•	 If	the	age	is	less	than	18,	it	prints	“You	are	not	eligible	to	vote	yet.”

5.	 Finally,	the	scanner	object	is	closed	to	release	system	resources	after	it’s	no	longer	needed.

Output:

TASK	3: Grading system
//	Grading	System

import	java.util.Scanner;

public	class	GradingSystem	{

				public	static	void	main(String[]	args)	{

								//	Create	a	Scanner	object	to	read	input	from	the	console

								Scanner	scanner	=	new	Scanner(System.in);

								//	Prompt	the	user	to	enter	the	student’s	score

								System.out.print(“Enter	the	student’s	score:	“);

								//	Read	the	integer	input	provided	by	the	user

								int	score	=	scanner.nextInt();

								//	Determine	the	grade	based	on	the	score	and	print	the	result

								if	(score	>=	90)	{

												System.out.println(“Grade:	A”);

								}	else	if	(score	>=	80)	{

												System.out.println(“Grade:	B”);

CITS : IT & ITES - Computer Software Application - Exercise 85

© NIMI

NOT TO BE REPUBLISHED

39

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 85

								}	else	if	(score	>=	70)	{

												System.out.println(“Grade:	C”);

								}	else	if	(score	>=	60)	{

												System.out.println(“Grade:	D”);

								}	else	{

												System.out.println(“Grade:	F”);

 }

								//	Close	the	scanner	object	to	release	system	resources

								scanner.close();

 }

}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 85

© NIMI

NOT TO BE REPUBLISHED

40

COMPUTER SOFTWARE APPLICATION - CITS

TASK	4: Check if a year is a century year
import	java.util.Scanner;

public	class	CenturyYearCheck	{

				public	static	void	main(String[]	args)	{

								//	Create	a	Scanner	object	to	read	input	from	the	console

								Scanner	scanner	=	new	Scanner(System.in);

								//	Prompt	the	user	to	enter	a	year

								System.out.print(“Enter	a	year:	“);

								//	Read	the	integer	input	provided	by	the	user

								int	year	=	scanner.nextInt();

								//	Check	if	the	year	is	divisible	by	100	and	print	the	result

								if	(year	%	100	==	0)	{

												System.out.println(year	+	“	is	a	century	year.”);

								}	else	{

												System.out.println(year	+	“	is	not	a	century	year.”);

 }

								//	Close	the	scanner	object	to	release	system	resources

								scanner.close();

 }

}

Explanation:
1	 The	program	begins	by	importing	the	Scanner	class	from	the	java.util	package	to	allow	user	input	from	the	

console.

2	 The	CenturyYearCheck	class	contains	the	main	method,	which	serves	as	the	entry	point	of	the	program.

3	 Inside	the	main	method:

	 •	 It	creates	a	new	Scanner	object	named	scanner	to	read	input	from	the	console.

CITS : IT & ITES - Computer Software Application - Exercise 85

© NIMI

NOT TO BE REPUBLISHED

41

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 85

	 •	 It	prompts	the	user	to	enter	a	year	by	displaying	the	message	“Enter	a	year:	“.

	 •	 It	reads	the	integer	input	provided	by	the	user	using	the	nextInt()	method	of	the	Scanner	class	and	stores	it	
in	the	variable	year.

4	 The	program	then	checks	whether	the	entered	year	is	divisible	by	100	without	leaving	a	remainder:

	 •	 If	the	remainder	of	year	divided	by	100	is	equal	to	0,	then	the	year	is	a	century	year.

	 •	 If	the	remainder	is	not	equal	to	0,	then	the	year	is	not	a	century	year.

5	 Depending	on	the	result	of	the	check,	the	program	prints	out	a	message	indicating	whether	the	year	is	a	century	
year	or	not.

6	 Finally,	the	scanner	object	is	closed	to	release	system	resources	after	it’s	no	longer	needed.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 85

© NIMI

NOT TO BE REPUBLISHED

42

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 86 : Use the switch statement

At the end of this exercise you shall be able to
•	 know	the	syntax	of		switch	statement	and	its	use
•	 develop	Java	programs	using	switch	statement.

Requirements

Procedure
	 A	switch	statement	in	Java	provides	an	alternative	way	to	express	a	multi-branch	decision	based	on	the	value	

of	an	expression.	It’s	often	used	when	you	have	a	single	variable	or	expression	whose	value	needs	to	be	tested	
against	multiple	conditions.
		switch	(expression)	{
				case	value1:
								//	Code	block	executed	if	expression	equals	value1
								break;
				case	value2:
								//	Code	block	executed	if	expression	equals	value2
								break;
				//	Additional	cases	as	needed
				default:
								//	Code	block	executed	if	expression	doesn’t	match	any	case
								break;
}
TASK	1:	Select an option using a switch statement
import	java.util.Scanner;
public	class	SimpleMenu	{
public	static	void	main(String[]	args)	{
Scanner	scanner	=	new	Scanner(System.in);
System.out.println(“Select	an	option:”);
System.out.println(“1.	Print	Hello”);
System.out.println(“2.	Print	World”);
System.out.println(“3.	Exit”);
int	choice	=	scanner.nextInt();
switch	(choice)	{
case	1:
System.out.println(“Hello”);

Tools/Materials
•		 PC/Laptop	with	Window	OS	
•		 JDK	Software
•	 Text	editor	(Visual	studio	/	Sublime		/	Note	pad)

© NIMI

NOT TO BE REPUBLISHED

43

COMPUTER SOFTWARE APPLICATION - CITS

break;
case	2:
System.out.println(“World”);
break;
case	3:
System.out.println(“Exiting	the	program.”);
break;
default:
System.out.println(“Invalid	choice”);
 }
scanner.close();
 }
}
Explanation :

	 This	Java	program,	named	SimpleMenu,	presents	a	basic	menu	system	that	allows	users	to	select	from	a	list	of	
options	and	performs	actions	based	on	their	selection.	Here’s	how	it	works:
1	 The	program	starts	by	 importing	 the	Scanner	class	 from	the	 java.util	package	to	allow	user	 input	 from	the	

console.
2	 The	SimpleMenu	class	contains	the	main	method,	which	serves	as	the	entry	point	of	the	program.
3	 Inside	the	main	method:

	 	 •	 It	creates	a	new	Scanner	object	named	scanner	to	read	input	from	the	console.
	 	 •	 It	displays	a	menu	to	the	user,	prompting	them	to	select	an	option:
	 	 •	 Option	1:	Print	“Hello”
	 	 •	 Option	2:	Print	“World”
	 	 •	 Option	3:	Exit	the	program
	 	 •	 It	reads	the	integer	input	provided	by	the	user	using	the	nextInt()	method	of	the	Scanner	class	and	stores	

it	in	the	variable	choice.
4	 The	program	then	uses	a	switch	statement	to	perform	different	actions	based	on	the	value	of	choice:

	 	 •	 If	the	user	selects	1,	it	prints	“Hello”	to	the	console.
	 	 •	 If	the	user	selects	2,	it	prints	“World”	to	the	console.
	 	 •	 If	the	user	selects	3,	it	prints	“Exiting	the	program.”	and	terminates.
	 	 •	 If	the	user	selects	any	other	value,	it	prints	“Invalid	choice”	to	the	console.

5	 After	executing	the	appropriate	action,	the	program	closes	the	scanner	object	to	release	system	resources.
Output:

CITS : IT & ITES - Computer Software Application - Exercise 86

© NIMI

NOT TO BE REPUBLISHED

44

COMPUTER SOFTWARE APPLICATION - CITS

TASK		2	: Day of the week using a switch statement
import	java.util.Scanner;

public	class	DayOfWeek	{

public	static	void	main(String[]	args)	{

Scanner	scanner	=	new	Scanner(System.in);

System.out.print(“Enter	a	number	(1-7)	representing	a	day	of	the	week:	“);

int	day	=	scanner.nextInt();

String	dayName;

switch	(day)	{

case	1:

dayName	=	“Sunday”;

break;

case	2:

dayName	=	“Monday”;

break;

case	3:

dayName	=	“Tuesday”;

break;

case	4:

dayName	=	“Wednesday”;

break;

CITS : IT & ITES - Computer Software Application - Exercise 86

© NIMI

NOT TO BE REPUBLISHED

45

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 86

case	5:

dayName	=	“Thursday”;

break;

case	6:

dayName	=	“Friday”;

break;

case	7:

dayName	=	“Saturday”;

break;

default:

dayName	=	“Invalid	day”;

 }

System.out.println(“The	day	is:	“	+	dayName);

scanner.close();

 }

}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 86

© NIMI

NOT TO BE REPUBLISHED

46

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 87 : Use the Do … While and While – do loops

At the end of this exercise you shall be able to
•	 know	the	syntax	of		while	and	do…while	loops	and	its	use
•	 develop	Java	programs	using	while	and	do…while	loops.

Requirements

Procedure
	 Both	do-while	and	while	loops	are	control	flow	structures	in	Java	used	for	repetitive	execution	of	a	block	of	code.	

They	differ	primarily	in	when	the	loop	condition	is	evaluated.
 TASK		1: Sum of numbers using a do-while loop
	 import	java.util.Scanner;
	 public	class	DoWhileSum	{
	 public	static	void	main(String[]	args)	{
								Scanner	scanner	=	new	Scanner(System.in);
	 int	sum	=	0;
	 int	number;
	 do	{
	 System.out.print(“Enter	a	number	(enter	0	to	exit):	“);
	 number	=	scanner.nextInt();
	 sum	+=	number;
								}	while	(number	!=	0);
	 System.out.println(“Sum	of	entered	numbers:	“	+	sum);
	 scanner.close();
 }
 }
 Output:

	 This	program	uses	a	do-while	loop	to	repeatedly	prompt	the	user	to	enter	numbers	until	they	enter	0.	It	calculates	
and	prints	the	sum	of	all	entered	numbers

Tools/Materials
•		 PC/Laptop	with	Window	OS	
•		 JDK	Software
•	 Text	editor	(Visual	studio	/	Sublime		/	Note	pad)

© NIMI

NOT TO BE REPUBLISHED

47

COMPUTER SOFTWARE APPLICATION - CITS

 TASK	2: Guessing Game using do-while loop
	 import	java.util.Random;
	 importjava.util.Scanner;
	 public	class	DoWhileGuessingGame	{
	 public	static	void	main(String[]	args)	{
								Scanner	scanner	=	new	Scanner(System.in);
	 		Random	random	=	new	Random();
	 intsecretNumber	=	random.nextInt(100)	+	1;
	 int	guess;
	 int	attempts	=	0;
	 System.out.println(“Guess	the	secret	number	between	1	and	100.”);
	 do	{
	 System.out.print(“Enter	your	guess:	“);
	 guess	=	scanner.nextInt();
	 attempts++;
	 if	(guess	<secretNumber)	{
	 System.out.println(“Too	low!	Try	again.”);
												}	else	if	(guess	>secretNumber)	{
	 System.out.println(“Too	high!	Try	again.”);
												}	else	{
	 System.out.println(“Congratulations!	You	guessed	the	secret	number	in	“	+	attempts	+	“	attempts.”);
 }
								}	while	(guess	!=	secretNumber);
	 scanner.close();
 }
 }
 Output:

CITS : IT & ITES - Computer Software Application - Exercise 87

© NIMI

NOT TO BE REPUBLISHED

48

COMPUTER SOFTWARE APPLICATION - CITS

TASK	3:	Countdown using a while loop
import	java.util.Scanner;
public	class	WhileCountdown	{
public	static	void	main(String[]	args)	{
								Scanner	scanner	=	new	Scanner(System.in);
System.out.print(“Enter	a	starting	number	for	countdown:	“);
int	count	=	scanner.nextInt();
while	(count	>=	0)	{
System.out.println(count);
count--;
 }
System.out.println(“Blastoff!”);
scanner.close();
 }
}
Output:

This	 program	 uses	 a	 while	 loop	 to	 create	 a	 countdown	 starting	 from	 a	 user-specified	 number.	 It	 prints	 the	
countdown	and	then	displays	“Blastoff!”	when	the	countdown	reaches	0.

TASK	4: Factorial Calculation using while loop
import	java.util.Scanner;
public	class	WhileFactorial	{
public	static	void	main(String[]	args)	{
								Scanner	scanner	=	new	Scanner(System.in);
System.out.print(“Enter	a	number	to	calculate	its	factorial:	“);
int	number	=	scanner.nextInt();
int	factorial	=	1;
int	i	=	1;
while	(i<=	number)	{
factorial	*=	i;
i++;

CITS : IT & ITES - Computer Software Application - Exercise 87

© NIMI

NOT TO BE REPUBLISHED

49

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 87

 }
System.out.println(“Factorial	of	“	+	number	+	“:	“	+	factorial);
scanner.close();
 }
}
Output:

CITS : IT & ITES - Computer Software Application - Exercise 87

© NIMI

NOT TO BE REPUBLISHED

50

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 88 : Use the For Loop

At the end of this exercise you shall be able to
•	 know	the	syntax	of		for	loop	and	its	use
•	 develop	Java	programs	using	for	loop.

Requirements

Procedure
TASK	1: Sum of ‘n’ Numbers using for loop
import	java.util.Scanner;
public	class	ForLoopSum	{
public	static	void	main(String[]	args)	{
Scanner	scanner	=	new	Scanner(System.in);
System.out.print(“Enter	the	number	of	terms:	“);
int	n	=	scanner.nextInt();
int	sum	=	0;
for	(int	i	=	1;	i<=	n;	i++)	{
System.out.print(“Enter	number	“	+	i	+	“:	“);
int	number	=	scanner.nextInt();
sum	+=	number;
 }
System.out.println(“Sum	of	entered	numbers:	“	+	sum);
scanner.close();
 }
}
Output:

Tools/Materials
•		 PC/Laptop	with	Window	OS	
•		 JDK	Software
•	 Text	editor	(Visual	studio	/	Sublime		/	Note	pad)

© NIMI

NOT TO BE REPUBLISHED

51

COMPUTER SOFTWARE APPLICATION - CITS

This	program	uses	a	for	loop	to	calculate	the	sum	of	a	specified	number	of	terms.	It	prompts	the	user	to	enter	
numbers	for	each	term	and	then	calculates	the	sum	of	those	numbers.

TASK	2: Multiplication Table using for loop
import	java.util.Scanner;
public	class	MultiplicationTable	{
public	static	void	main(String[]	args)	{
								Scanner	scanner	=	new	Scanner(System.in);

System.out.print(“Enter	the	number	for	the	multiplication	table:	“);
int	number	=	scanner.nextInt();
System.out.print(“Enter	the	number	of	terms:	“);
int	n	=	scanner.nextInt();
System.out.println(“Multiplication	table	for	“	+	number	+	“:”);
for	(int	i	=	1;	i<=	n;	i++)	{
System.out.println(number	+	“	*	“	+	i	+	“	=	“	+	(number	*	i));
 }
scanner.close();
 }
}
Output:

CITS : IT & ITES - Computer Software Application - Exercise 88

© NIMI

NOT TO BE REPUBLISHED

52

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 89 : Use the Break and Continue Keywords

At the end of this exercise you shall be able to
•	 know	the	syntax	break	and	continue	statements		and	its	use
•	 develop	Java	programs	using	break	and	continue	statements.

Requirements

Procedure
TASK	1: Using break in a Loop
import	java.util.Scanner;
public	class	BreakExample	{
	public	static	void	main(String[]	args)	{
								//	This	program	searches	for	a	specific	number	in	a	loop
								Scanner	scanner	=	new	Scanner(System.in);
								System.out.print(“Enter	the	target	number:	“);
								int	target	=	scanner.nextInt();
								boolean	found	=	false;
								//	Search	for	the	target	number	in	a	loop
								for	(int	i	=	1;	i	<=	10;	i++)	{
												if	(i	==	target)	{
																found	=	true;
																break;		//	Exit	the	loop	when	the	target	number	is	found
 }
 }
								if	(found)	{
												System.out.println(“The	target	number	“	+	target	+	“	is	found.”);
								}	else	{
												System.out.println(“The	target	number	“	+	target	+	“	is	not	found.”);
 }
								scanner.close();
 }
}
Output:

Tools/Materials
•		 PC/Laptop	with	Window	OS	
•		 JDK	Software
•	 Text	editor	(Visual	studio	/	Sublime		/	Note	pad)

© NIMI

NOT TO BE REPUBLISHED

53

COMPUTER SOFTWARE APPLICATION - CITS

TASK	2:	Using continue in a Loop
public	class	ContinueExample	{
				public	static	void	main(String[]	args)	{
								//	This	program	prints	even	numbers	in	a	loop,	skipping	odd	numbers

								//	Print	even	numbers	in	a	loop
								for	(int	i	=	1;	i	<=	10;	i++)	{
												if	(i	%	2	!=	0)	{
																//	Skip	odd	numbers	and	continue	to	the	next	iteration
																continue;
 }
												System.out.println(“Even	number:	“	+	i);
 }
 }
}
Output:

CITS : IT & ITES - Computer Software Application - Exercise 89

© NIMI

NOT TO BE REPUBLISHED

54

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 90 : Use the JAVA numbers class methods

At the end of this exercise you shall be able to
• know more about the use of number class methods in Java
• develop Java programs using number class methods.

Tools/Materials
• PC/Laptop with Windows OS
• JDK Software

 • Text editor (Visual studio / Sublime / Note pad)

Requirements

Procedure
In Java, the Number class is an abstract class that serves as the superclass for all the numeric wrapper classes.
The most commonly used numeric wrapper classes are:

1 Byte

2 Short

3 Integer

4 Long

5 Float

6 Double

All these classes extend the Number class and provide methods to convert the primitive types (byte, short, int,
long, float, double) into their respective wrapper objects and vice versa. They also inherit methods from the
Number class.

1 Byte
• Represents an 8-bit signed integer.

• Methods include: byteValue(), shortValue(), intValue(), longValue(), floatValue(), doubleValue().

Task_Byte : Here’s an example program demonstrating the use of methods inherited from the Number
class for the Byte class:

 public class ByteMethodsExample {

 public static void main(String[] args) {

 // Example using Byte class

 Byte byteValue = 120;

 // byteValue()

 byte byteResult = byteValue.byteValue();

 System.out.println(“byteValue(): “ + byteResult);

 // shortValue()

 short shortResult = byteValue.shortValue();

 System.out.println(“shortValue(): “ + shortResult);

© NIMI

NOT TO BE REPUBLISHED

55

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 90

 // intValue()

 int intResult = byteValue.intValue();

 System.out.println(“intValue(): “ + intResult);

 // longValue()

 long longResult = byteValue.longValue();

 System.out.println(“longValue(): “ + longResult);

 // floatValue()

 float floatWResult = byteValue.floatValue();

 System.out.println(“floatValue(): “ + floatResult);

 // doubleValue()

 double doubleResult = byteValue.doubleValue();

 System.out.println(“doubleValue(): “ + doubleResult);

 }

}

Output :

2 Short
• Represents a 16-bit signed integer.

• Methods include: shortValue(), intValue(), longValue(), floatValue(), doubleValue().

 Task_Short : Here’s an example program demonstrating the use of methods inherited from the Number
class for the Short class:

 public class ShortMethodsExample {
 public static void main(String[] args) {
 // Example using Short class
 Short shortValue = 300;

 // byteValue()
 byte byteResult = shortValue.byteValue();
 System.out.println(“byteValue(): “ + byteResult);

© NIMI

NOT TO BE REPUBLISHED

56

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 90

 // shortValue()
 short shortResult = shortValue.shortValue();
 System.out.println(“shortValue(): “ + shortResult);

 // intValue()
 int intResult = shortValue.intValue();
 System.out.println(“intValue(): “ + intResult);

 // longValue()
 long longResult = shortValue.longValue();
 System.out.println(“longValue(): “ + longResult);
 // floatValue()
 float floatResult = shortValue.floatValue();
 System.out.println(“floatValue(): “ + floatResult);

 // doubleValue()
 double doubleResult = shortValue.doubleValue();
 System.out.println(“doubleValue(): “ + doubleResult);
 }
}

Output:

3 Integer
• Represents a 32-bit signed integer.

• Methods include: intValue(), longValue(), floatValue(), doubleValue().

 Task_Integer: Here’s an example program demonstrating the use of methods inherited from the Number
class for the Integer class:

 public class IntegerMethodsExample {
 public static void main(String[] args) {
 // Example using Integer class
 Integer intValue = 42;

 // intValue()
 int intResult = intValue.intValue();
 System.out.println(“intValue(): “ + intResult);

© NIMI

NOT TO BE REPUBLISHED

57

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 90

 // longValue()
 long longResult = intValue.longValue();
 System.out.println(“longValue(): “ + longResult);

 // floatValue()
 float floatResult = intValue.floatValue();
 System.out.println(“floatValue(): “ + floatResult);

 // doubleValue()
 double doubleResult = intValue.doubleValue();
 System.out.println(“doubleValue(): “ + doubleResult);
 }
}
Output :

4 Long
• Represents a 64-bit signed integer.

• Methods include: longValue(), floatValue(), doubleValue().

 Task_Long: Here’s an example program demonstrating the use of methods inherited from the Number
class for the Long class:

 public class LongMethodsExample {
 public static void main(String[] args) {
 // Example using Long class
 Long longValue = 123456L;

 // longValue()
 long longResult = longValue.longValue();
 System.out.println(“longValue(): “ + longResult);

 // floatValue()
 float floatResult = longValue.floatValue();
 System.out.println(“floatValue(): “ + floatResult);

 // doubleValue()
 double doubleResult = longValue.doubleValue();
 System.out.println(“doubleValue(): “ + doubleResult);
 }

© NIMI

NOT TO BE REPUBLISHED

58

COMPUTER SOFTWARE APPLICATION - CITS

}

Output:

5 Float
• Represents a 32-bit IEEE 754 floating-point.

• Methods include: floatValue(), doubleValue().

 Task_Float: Here’s an example program demonstrating the use of methods inherited from the Number
class for the Float class:

 public class FloatMethodsExample {

 public static void main(String[] args) {

 // Example using Float class

 Float floatValue = 3.14f;

 // floatValue()

 float floatResult = floatValue.floatValue();

 System.out.println(“floatValue(): “ + floatResult);

 // doubleValue()

 double doubleResult = floatValue.doubleValue();

 System.out.println(“doubleValue(): “ + doubleResult);

 }

}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 90

© NIMI

NOT TO BE REPUBLISHED

59

COMPUTER SOFTWARE APPLICATION - CITS

6 Double
• Represents a 64-bit IEEE 754 floating-point.
• Methods include: doubleValue().

 Task_Double: Here’s an example program demonstrating the use of the doubleValue() method for the
Double class:

 public class DoubleMethodsExample {
 public static void main(String[] args) {
 // Example using Double class
 Double doubleValue = 2.71828;

 // doubleValue()
 double doubleResult = doubleValue.doubleValue();
 System.out.println(“doubleValue(): “ + doubleResult);
 }
}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 90

© NIMI

NOT TO BE REPUBLISHED

60

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 91 : Use the JAVA character class methods

At the end of this exercise you shall be able to
• know more about the use of character class methods in Java
• develop Java programs using character class methods.

Tools/Materials
• PC/Laptop with Windows OS
• JDK Software

 • Text editor (Visual studio / Sublime / Note pad)

Requirements

Here are some examples demonstrating the use of various methods in the Character class in Java:

TASK 1: Check if a Character is a Letter or Digit
 public class CharacterExample1 {

 public static void main(String[] args) {

 char ch1 = ‘A’;

 char ch2 = ‘5’;

 System.out.println(ch1 + “ is a letter: “ + Character.isLetter(ch1));

 System.out.println(ch2 + “ is a digit: “ + Character.isDigit(ch2));

 }

}

Output;

Procedure

© NIMI

NOT TO BE REPUBLISHED

61

COMPUTER SOFTWARE APPLICATION - CITS

TASK 2: Convert Uppercase to Lowercase and Vice Versa
 public class CharacterExample2 {

 public static void main(String[] args) {

 char uppercaseChar = ‘H’;

 // Convert to lowercase

 char lowercaseChar = Character.toLowerCase(uppercaseChar);

 System.out.println(“Uppercase: “ + uppercaseChar);

 System.out.println(“Lowercase: “ + lowercaseChar);

 // Convert back to uppercase

 char originalUppercaseChar = Character.toUpperCase(lowercaseChar);

 System.out.println(“Original Uppercase: “ + originalUppercaseChar);

 }

}

Output:

TASK 3: Check if a Character is Uppercase or Lowercase
public class CharacterExample3 {

 public static void main(String[] args) {

 char ch1 = ‘a’;

 char ch2 = ‘Z’;

 System.out.println(ch1 + “ is uppercase: “ + Character.isUpperCase(ch1));

 System.out.println(ch2 + “ is lowercase: “ + Character.isLowerCase(ch2));

 }

}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 91

© NIMI

NOT TO BE REPUBLISHED

62

COMPUTER SOFTWARE APPLICATION - CITS

TASK 4: Convert a Character to String
public class CharacterExample4 {

 public static void main(String[] args) {

 char ch = ‘X’;

 String charString = Character.toString(ch);

 System.out.println(“Character as String: “ + charString);

 }

}

Output:

TASK 5: Check if a character is a Whitespace Character
public class CharacterExample5 {

 public static void main(String[] args) {

 char ch1 = ‘ ‘;

 char ch2 = ‘A’;

 System.out.println(ch1 + “ is a whitespace character: “ + Character.isWhitespace(ch1));

 System.out.println(ch2 + “ is a whitespace character: “ + Character.isWhitespace(ch2));

 }

}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 91

© NIMI

NOT TO BE REPUBLISHED

63

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 92 : Use the JAVA string class methods

At the end of this exercise you shall be able to
• know more about the use of string class methods in Java
• develop Java programs using string class methods.

Tools/Materials
• PC/Laptop with Windows OS
• JDK Software

 • Text editor (Visual studio / Sublime / Note pad)

Requirements

The String class in Java provides numerous methods for working with strings. Here are a few examples
demonstrating the use of some common methods of the String class:

TASK 1: Concatenate Strings
//Concatenate Strings

 public class StringExample1 {

 public static void main(String[] args) {

 String str1 = “Hello”;

 String str2 = “World”;

 System.out.println(“ String 1: “ + str1);

 System.out.println(“ String 2: “ + str2);

 // Concatenation using the concat() method

String result = str1.concat(“ “ + str2);

 System.out.println(“Concatenated String: “ + result);

 }

}

Explanation:
• In Java, string concatenation is the process of combining two or more strings into a single string.

• The concat() method is one way to concatenate strings in Java. It appends one string to the end of
another string.

• In the example, str1.concat(“ “ + str2) concatenates str1, a space, and str2.

• The result is a new string “Hello World”, which is stored in the variable result.

• String concatenation using the concat() method creates a new string object containing the concatenated
result. The original strings remain unchanged.

• The + operator can also be used for string concatenation in Java, as demonstrated in the println()
statements. It works similarly to the concat() method.

Procedure

© NIMI

NOT TO BE REPUBLISHED

64

COMPUTER SOFTWARE APPLICATION - CITS

• String concatenation is a common operation in Java when dealing with text processing, output formatting,
and building dynamic strings for display or storage.

Output:

TASK 2: String Length
public class StringExample2 {

 public static void main(String[] args) {

 String str = “Java Programming”;

 System.out.println(“String: “ + str);
 // Get the length of the string
 int length = str.length();
 System.out.println(“Length of the String: “ + length);
 }
}

Explanation:
• The length() method is a built-in method provided by the String class in Java.
• It returns an integer representing the number of characters in the string.
• The length includes all characters in the string, including whitespace characters such as spaces.
• In the example, the string “Java Programming” consists of 16 characters, including the space between

“Java” and “Programming”.
• The length() method is commonly used in string manipulation tasks, input validation, and text processing

to determine the size of the string dynamically at runtime.
• It’s important to note that the length of a string does not include the null character (\0) at the end of the

string, as Java strings are null-terminated.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 92

© NIMI

NOT TO BE REPUBLISHED

65

COMPUTER SOFTWARE APPLICATION - CITS

TASK 3: Java program to perform various string methods in single program
 public class StringMethodsExample {

 public static void main(String[] args) {

 // Example String

 String originalString = “Hello, World!”;

 System.out.println(“Original String: “ + originalString);

 // 1. Convert to Uppercase

 String uppercaseString = originalString.toUpperCase();

 System.out.println(“1. Uppercase: “ + uppercaseString);

 // 2. Convert to Lowercase

 String lowercaseString = originalString.toLowerCase();

 System.out.println(“2. Lowercase: “ + lowercaseString);

 // 3. Substring

 String substring = originalString.substring(7, 12);

 System.out.println(“3. Substring (Display ‘World’ from the Original String): “ + substring);

 // 4. Index of a Character

 int indexOfW = originalString.indexOf(‘W’);

 System.out.println(“4. Index of ‘W’ (index value start from 0): “ + indexOfW);

 // 5. Replace characters

 String replacedString = originalString.replace(‘o’, ‘X’);

 System.out.println(“5. Replaced String (Replacing ‘o’ with ‘X’): “ + replacedString);

 // 6. Check if starts with “Hello”

 boolean startsWithHello = originalString.startsWith(“Hello”);

 System.out.println(“6. Starts with ‘Hello’: “ + startsWithHello);

 // 7. Check if ends with “World!”

 boolean endsWithWorld = originalString.endsWith(“World!”);

 System.out.println(“7. Ends with ‘World!’: “ + endsWithWorld);

 // 8. Trim leading and trailing whitespaces

 String stringWithWhitespaces = “ Trim Me “;

CITS : IT & ITES - Computer Software Application - Exercise 92

© NIMI

NOT TO BE REPUBLISHED

66

COMPUTER SOFTWARE APPLICATION - CITS

 System.out.println(“8. string With Whitespaces : “ + stringWithWhitespaces);

 String trimmedString = stringWithWhitespaces.trim();

 System.out.println(“ Trimmed String (in the begining and end): ‘” + trimmedString + “’”);

 }

}

Output:

Related Exercise:
Q1. Develop a java program to input a string through the keyboard and perform various string class methods
based on User’s Choice.

CITS : IT & ITES - Computer Software Application - Exercise 92

© NIMI

NOT TO BE REPUBLISHED

67

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 93 : Create and use arrays

At the end of this exercise you shall be able to
• know about single dimensional and two dimensional arrays and its use in Java
• develop Java programs using single dimensional and two dimensional arrays.

Tools/Materials
• PC/Laptop with Windows OS
• JDK Software

 • Text editor (Visual studio / Sublime / Note pad)

Requirements

Procedure
1 Single Dimensional Arrays
TASK 1: Method1: Sum of Array Elements
// Sum of Array elements

public class SumOfArray {

 public static void main(String[] args) {

 // Declare and initialize an array

 int[] numbers = {1, 2, 3, 4, 5};

 System.out.print(“Array elements are: “);

 // Initialize sum variable

 int sum = 0;

 // Iterate through the array and add each element to sum

 for (int i = 0; i < numbers.length; i++) {

 System.out.print(numbers[i]+” “);

 sum += numbers[i];

 }

 // Go to the next line

 System.out.println();

 // Print the sum

 System.out.println(“Sum of array elements: “ + sum);

 }

}

© NIMI

NOT TO BE REPUBLISHED

68

COMPUTER SOFTWARE APPLICATION - CITS

Output:

Explanation:
• This program calculates the sum of elements in an array of integers.

• It initializes an array numbers with values {1, 2, 3, 4, 5}.

• It iterates through each element of the array using a for loop and adds each element to the variable sum.

• Finally, it prints the sum of the array elements.

TASK 1_Method2: Java program that allows the user to input array elements through the keyboard and
displays the sum of those elements

Here’s a Java program that allows the user to input array elements through the keyboard and displays the sum
of those elements:

//Sum of array elements

import java.util.Scanner;

public class ArraySum {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 // Prompt the user to enter the size of the array

 System.out.print(“Enter the size of the array: “);

 int size = scanner.nextInt();

 // Create an array of the specified size

 int[] numbers = new int[size];

 // Prompt the user to enter array elements

 System.out.println(“Enter the elements of the array:”);

 for (int i = 0; i < size; i++) {

 System.out.print(“Element “ + (i + 1) + “: “);

 numbers[i] = scanner.nextInt();

 }

CITS : IT & ITES - Computer Software Application - Exercise 93

© NIMI

NOT TO BE REPUBLISHED

69

COMPUTER SOFTWARE APPLICATION - CITS

 // Calculate the sum of array elements

 int sum = 0;

 for (int i = 0; i < size; i++) {

 sum += numbers[i];

 }

 // Display the sum of array elements

 System.out.println(“Sum of array elements: “ + sum);

 scanner.close(); // Close the scanner to avoid resource leak

 }

}

Output:

Explanation:
• The program starts by importing the Scanner class from the java.util package, which is used to read input

from the keyboard.

• It creates a Scanner object named scanner to read input.

• The program prompts the user to enter the size of the array and reads the input using scanner.nextInt().

• It then creates an integer array numbers of the specified size.

• Using a for loop, the program prompts the user to enter each element of the array and reads the input for
each element.

• After reading all the elements, another for loop calculates the sum of all the elements of the array.

CITS : IT & ITES - Computer Software Application - Exercise 93

© NIMI

NOT TO BE REPUBLISHED

70

COMPUTER SOFTWARE APPLICATION - CITS

• Finally, it prints out the sum of the array elements.

• The scanner.close() statement closes the scanner to release system resources.

This program allows the user to dynamically input array elements and calculates the sum accordingly.

CITS : IT & ITES - Computer Software Application - Exercise 93

TASK 2: Finding Maximum Element in an Array
public class MaxElement {

 public static void main(String[] args) {

 // Declare and initialize an array

 int[] numbers = {10, 5, 20, 8, 15};

 System.out.print(“Element in the array are: “);

 // Assume the first element is the maximum

 int max = numbers[0];

 // Iterate through the array to find the maximum element

 for (int i = 1; i < numbers.length; i++) {

 System.out.print(numbers[i]+” “) ;

 if (numbers[i] > max) {

 max = numbers[i];

 }

 }

 System.out.println();

 // Print the maximum element

 System.out.println(“Maximum element in the array: “ + max);

 }

}

Output:

© NIMI

NOT TO BE REPUBLISHED

71

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:

• This program finds the maximum element in an array of integers.

• It initializes an array numbers with values {10, 5, 20, 8, 15}.

• It assumes the first element of the array as the maximum.

• Then, it iterates through the array starting from the second element, comparing each element with the
current maximum and updating max if a larger element is found.

• Finally, it prints the maximum element.

These examples demonstrate some basic operations with arrays in Java, such as summing up elements and
finding the maximum element. They showcase the use of loops for iteration and conditional statements for
making comparisons.

CITS : IT & ITES - Computer Software Application - Exercise 93

TASK 3: Sorting Array elements

Method 1: Java program that allows the user to input array elements through the keyboard and displays them in
sorted order using Quick Sort - Arrays.sort() method:

// using Quick Sort - Arrays.sort() method

 import java.util.Arrays;

import java.util.Scanner;

public class ArraySort {
 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);

 // Prompt the user to enter the size of the array
 System.out.print(“Enter the size of the array: “);
 int size = scanner.nextInt();

 // Create an array of the specified size
 int[] numbers = new int[size];

 // Prompt the user to enter array elements
 System.out.println(“Enter the elements of the array:”);
 for (int i = 0; i < size; i++) {
 System.out.print(“Element “ + (i + 1) + “: “);
 numbers[i] = scanner.nextInt();
 }

 // Sort the array
 Arrays.sort(numbers);

 // Display the sorted array

 System.out.println(“Array elements in sorted order:”);
 for (int i = 0; i < size; i++) {

© NIMI

NOT TO BE REPUBLISHED

72

COMPUTER SOFTWARE APPLICATION - CITS

 System.out.println(numbers[i]);
 }
 scanner.close(); // Close the scanner to avoid resource leak
 }
}

Output:

Explanation:
• This program is quite similar to the previous one but with an additional step to sort the array elements

before displaying them.

• It imports the Arrays class from the java.util package, which provides a method sort() to sort arrays.

• After reading all the elements, it uses Arrays.sort(numbers) to sort the array in ascending order.

• Then, it displays the sorted array elements using a loop.

• Finally, it closes the Scanner object to release system resources.

This program allows the user to input array elements dynamically and displays them in sorted order.

Method 2:Java program that sorts n elements in descending order using the bubble sort method:

Let’s see with an example. Here, each step is briefly illustrated:

Bubble sort algorithm is an algorithm that sorts an array by comparing two adjacent elements and swapping
them if they are not in the intended order. Here order can be anything like increasing or decreasing.

Let’s see with an example. Here, each step is briefly illustrated:

CITS : IT & ITES - Computer Software Application - Exercise 93

© NIMI

NOT TO BE REPUBLISHED

73

COMPUTER SOFTWARE APPLICATION - CITS

 Comparisons happen till the last element 1
After each iteration, the greatest value of the array becomes the last index value of the array. In each iteration,
the comparison happens till the last unsorted element.

Now comparison reduced one step because the biggest element is at its right place

CITS : IT & ITES - Computer Software Application - Exercise 93

© NIMI

NOT TO BE REPUBLISHED

74

COMPUTER SOFTWARE APPLICATION - CITS

After all the iteration and comparisons of elements, we get a sorted array.

CITS : IT & ITES - Computer Software Application - Exercise 93

TASK 4: Sort array in descending order
// Sort array in descending order

import java.util.Scanner;

public class BubbleSortDescending {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 // Prompt the user to enter the number of elements

 System.out.print(“Enter the number of elements: “);

 int n = scanner.nextInt();

 // Create an array of the specified size

 int[] arr = new int[n];

 // Prompt the user to enter array elements

 System.out.println(“Enter the elements of the array:”);

 for (int i = 0; i < n; i++) {

© NIMI

NOT TO BE REPUBLISHED

75

COMPUTER SOFTWARE APPLICATION - CITS

 System.out.print(“Element “ + (i + 1) + “: “);

 arr[i] = scanner.nextInt();

 }

 // Bubble sort in descending order

 for (int i = 0; i < n - 1; i++) {

 for (int j = 0; j < n - i - 1; j++) {

 if (arr[j] < arr[j + 1]) {

 // Swap arr[j] and arr[j+1]

 int temp = arr[j];

 arr[j] = arr[j + 1];

 arr[j + 1] = temp;

 }
 }
 }

 // Display the sorted array in descending order
 System.out.println(“Array elements in descending order:”);
 for (int i = 0; i < n; i++) {
 System.out.println(arr[i]);
 }

 scanner.close(); // Close the scanner to avoid resource leak
 }
}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 93

© NIMI

NOT TO BE REPUBLISHED

76

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:
• This program sorts n elements in descending order using the bubble sort algorithm.

• It first prompts the user to enter the number of elements and reads the input.

• Then, it creates an array of the specified size.

• The user is prompted to enter each element of the array.

• The program then performs the bubble sort algorithm to sort the array in descending order.

• In the bubble sort algorithm, we iterate through the array multiple times, comparing adjacent elements
and swapping them if they are in the wrong order.

• After sorting, it displays the sorted array elements in descending order.

• Finally, it closes the Scanner object to release system resources.

Bubble sort is easy to understand and implement. It repeatedly steps through the list, compares adjacent
elements, and swaps them if they are in the wrong order. This process continues until the list is sorted.

Binary Search Algorithm in Java
Below is the Algorithm designed for Binary Search:

1 Start

2 Take input array and Target

3 Sort the array if it is not in sorted order .

4 Initialise start = 0 and end = (array size -1)

5 Initialise mid variable

CITS : IT & ITES - Computer Software Application - Exercise 93

TASK 5 : Binary Search
Binary search is one of the searching techniques applied when the input is sorted here we are focusing on
finding the middle element that acts as a reference frame whether to go left or right to it as the elements are
already sorted. This searching helps in optimizing the search technique with every iteration is referred to as
binary search and readers do stress over it as it is indirectly applied in solving questions.

© NIMI

NOT TO BE REPUBLISHED

77

COMPUTER SOFTWARE APPLICATION - CITS

6 mid = (start+end)/2

7 if array[mid] == target then return mid

8 if array[mid] < target then start = mid+1

9 if array[mid] > target then end = mid-1

10 if start<=end then goto step 6

11 return -1 as Not element found

12 Exit

Here’s a Java program that allows the user to input array elements through the keyboard and performs binary
search:

import java.util.Scanner;

public class BinarySearch {

 public static int binarySearch(int[] arr, int target) {

 int left = 0;

 int right = arr.length - 1;

 while (left <= right) {
 int mid = left + (right - left) / 2;

 if (arr[mid] == target)
 return mid;
 else if (arr[mid] < target)
 left = mid + 1;
 else
 right = mid - 1;
 }

 return -1;
 }

 public static void main(String[] args) {
 Scanner scanner = new Scanner(System.in);

 // Prompt the user to enter the size of the array
 System.out.print(“Enter the size of the array: “);
 int size = scanner.nextInt();

 // Create an array of the specified size
 int[] arr = new int[size];

 // Prompt the user to enter array elements

 System.out.println(“Enter the elements of the array :”);

 for (int i = 0; i < size; i++) {

CITS : IT & ITES - Computer Software Application - Exercise 93

© NIMI

NOT TO BE REPUBLISHED

78

COMPUTER SOFTWARE APPLICATION - CITS

 System.out.print(“Element “ + (i + 1) + “: “);

 arr[i] = scanner.nextInt();

 }

 // Bubble sort in ascending order

 for (int i = 0; i < size - 1; i++) {

 for (int j = 0; j < size - i - 1; j++) {

 if (arr[j] > arr[j + 1]) {

 // Swap arr[j] and arr[j+1]

 int temp = arr[j];

 arr[j] = arr[j + 1];

 arr[j + 1] = temp;

 }

 }

 }

 // Display the sorted array in ascending order

 System.out.print(“Array elements in ascending order:”);

 for (int i = 0; i < size; i++) {

 System.out.print(arr[i]+” “);

 }

 // Prompt the user to enter the target element to be searched

 System.out.println();

 System.out.print(“Enter the target element to search: “);

 int target = scanner.nextInt();

 // Perform binary search

 int index = binarySearch(arr, target);

 // Print the result of the search

 if (index != -1)

 System.out.println(“Element “ + target + “ found at index “ + (index=index+1));

 else
 System.out.println(“Element “ + target + “ not found in the array.”);

 scanner.close(); // Close the scanner

 }

}

CITS : IT & ITES - Computer Software Application - Exercise 93

© NIMI

NOT TO BE REPUBLISHED

79

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:

1 Binary Search Method:

• The binarySearch method performs a binary search on a sorted array to find the index of the target
element.

• It takes two parameters: the array (arr) and the target element (target).

• The method uses a while loop with left and right pointers to narrow down the search space until the target
element is found or the search space is empty.

• If the target element is found, the method returns the index; otherwise, it returns -1.

2 Main Method:

• The main method is the entry point of the program.

• It uses a Scanner to take user input for the size of the array, array elements, and the target element to be
searched.

3 Array Input and Bubble Sort:

• The program prompts the user to enter the size of the array and then input the array elements.

• After taking the array elements, a simple bubble sort algorithm is applied to sort the array in ascending
order.

4 Sorted Array Display:

• The sorted array is displayed in ascending order after the bubble sort.

5 Target Element Input:

• The user is prompted to enter the target element that needs to be searched in the array.

6 Binary Search Execution:

• The binarySearch method is called with the sorted array and the target element as parameters to perform
the binary search.

7 Search Result Display:

• The result of the binary search is displayed:

• If the target element is found, the program prints its index.

• If the target element is not found, a corresponding message is printed.

8 Scanner Closing:

• The Scanner is closed to release system resources.

CITS : IT & ITES - Computer Software Application - Exercise 93

© NIMI

NOT TO BE REPUBLISHED

80

COMPUTER SOFTWARE APPLICATION - CITS

Related Tasks:
Develop the following java programs:

1 To display the sum of odd and even numbers in an array

2 Read ‘n’ elements of an array and display the count of Zeros, Positive, Negative numbers in the array.

3 To search the given element is present in the array or not using Linear Search method (If present display
the position also)

4 Read ‘n’elements and store the even and odd numbers in two different arrays and display it.

5 Develop a program to sort ‘n’ elements in Ascending order using Bubble sort method.

2 Two Dimensional Arrays in Java
 TASK 1: Here’s a Java program that demonstrates the usage of two-dimensional arrays along with an

 explanation:
public class TwoDArrayDemo {
 public static void main(String[] args) {
 // Declaration and initialization of a 2D array
 int[][] matrix = { {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9} };
 // Displaying the elements of the 2D array
 System.out.println(“Elements of the 2D array:”);

CITS : IT & ITES - Computer Software Application - Exercise 93

Output:

© NIMI

NOT TO BE REPUBLISHED

81

COMPUTER SOFTWARE APPLICATION - CITS

 for (int i = 0; i < matrix.length; i++) {
 for (int j = 0; j < matrix[i].length; j++) {

 System.out.print(matrix[i][j] + “ “);

 }

 System.out.println(); // Move to the next line after printing each row

 }

 }

}

Output:

Explanation:
• A two-dimensional array in Java is an array of arrays. It is a matrix-like structure with rows and columns.

• In the above program, a 2D array named matrix is declared and initialized with integer values.

• The declaration int[][] matrix indicates that matrix is a two-dimensional array of integers.

• The array initializer { {1, 2, 3}, {4, 5, 6}, {7, 8, 9} } initializes the 2D array with three rows and three
columns.

• The outer loop for (int i = 0; i < matrix.length; i++) iterates over the rows of the array, and the inner loop
for (int j = 0; j < matrix[i].length; j++) iterates over the columns of each row.

• Within the nested loops, matrix[i][j] is used to access each element of the 2D array.

• The program prints each element of the 2D array row-wise, with each row printed on a separate line.

Two-dimensional arrays are commonly used to represent tabular data, matrices, grids, and other structured
data in Java programs. They offer a convenient way to organize and manipulate data in rows and columns. In
this example, the 2D array matrix represents a 3x3 matrix with integer values. The nested loops are used to
iterate over each element of the array and perform operations as needed.

 TASK 2: Java program that allows the user to input two matrices through the keyboard and displays their
sum:

import java.util.Scanner;

public class MatrixSum {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 // Prompt the user to enter the dimensions of the matrices

CITS : IT & ITES - Computer Software Application - Exercise 93

© NIMI

NOT TO BE REPUBLISHED

82

COMPUTER SOFTWARE APPLICATION - CITS

 System.out.print(“Enter the number of rows: “);

 int rows = scanner.nextInt();

 System.out.print(“Enter the number of columns: “);

 int cols = scanner.nextInt();

 // Create arrays to store the matrices

 int[][] matrix1 = new int[rows][cols];

 int[][] matrix2 = new int[rows][cols];

 int[][] sumMatrix = new int[rows][cols];

 // Prompt the user to input elements for the first matrix

 System.out.println(“Enter elements for the first matrix:”);

 inputMatrix(scanner, matrix1);

 // Prompt the user to input elements for the second matrix

 System.out.println(“Enter elements for the second matrix:”);

 inputMatrix(scanner, matrix2);

 // Calculate the sum of the matrices

 for (int i = 0; i < rows; i++) {

 for (int j = 0; j < cols; j++) {

 sumMatrix[i][j] = matrix1[i][j] + matrix2[i][j];

 }

 }

 // Display the sum matrix

 System.out.println(“Sum of the matrices:”);

 displayMatrix(sumMatrix);

 scanner.close(); // Close the scanner

 }

 // Method to input elements into a matrix

 public static void inputMatrix(Scanner scanner, int[][] matrix) {

 for (int i = 0; i < matrix.length; i++) {

 for (int j = 0; j < matrix[0].length; j++) {

 System.out.print(“Enter element [“ + (i+1) + “][“ + (j+1) + “]: “);

 matrix[i][j] = scanner.nextInt();

CITS : IT & ITES - Computer Software Application - Exercise 93

© NIMI

NOT TO BE REPUBLISHED

83

COMPUTER SOFTWARE APPLICATION - CITS

 }

 }

 }

 // Method to display a matrix
 public static void displayMatrix(int[][] matrix) {
 for (int[] row : matrix) {
 for (int element : row) {
 System.out.print(element + “ “);
 }
 System.out.println();
 }
 }
}

Explanation:
• This program allows the user to input two matrices of the same dimensions (number of rows and

columns) through the keyboard and then displays their sum.

• It first prompts the user to enter the dimensions (number of rows and columns) of the matrices.

• Two 2D arrays, matrix1 and matrix2, are created to store the input matrices, and another array,
sumMatrix, is created to store the sum of the matrices.

• The inputMatrix() method is used to prompt the user to input elements for each matrix.

• The displayMatrix() method is used to display the elements of a matrix.

• After inputting the elements for both matrices, the program calculates the sum of the corresponding
elements from the two matrices and stores the result in the sumMatrix array.

• Finally, it displays the sum matrix to the user.

This program demonstrates the use of 2D arrays in Java to represent matrices and perform basic matrix
operations, such as addition. It illustrates the inputting of matrix elements through the keyboard, calculating the
sum of two matrices, and displaying the resulting sum matrix.

Related Tasks:
Develop the following java programs:

1 Display the upper diagonal elements and its sum of a matrix

2 Display the upper triangular elements of a matrix

3 Display the transpose of a matrix

4 Display the product of two matrices

5 Check the given matrix is Symmetric or not (A symmetric matrix is a square matrix where A [i][j]=A[j][i]. ie.,
A= AT)

CITS : IT & ITES - Computer Software Application - Exercise 93

© NIMI

NOT TO BE REPUBLISHED

84

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 94 : Create and use simple classes, objects
and methods in JAVA

At the end of this exercise you shall be able to
• know about Create and use simple classes, objects and methods in JAVA
• develop Java programs using classes, objects and Methods.

Tools/Materials
• PC/Laptop with Windows OS
• JDK Software
• Text Editor (Visual Studio/Sublime/Notepad)

Requirements

Procedure
Here’s a brief overview of creating and using simple classes, objects, and methods in Java:

Classes:

•	 In	Java,	a	class	is	a	blueprint	for	creating	objects.	It	defines	the	properties	and	behaviors	of	objects.

• A class is declared using the class keyword followed by the class name.

•	 Inside	a	class,	you	define	fields	(variables)	and	methods	to	represent	the	attributes	and	behaviors	of	objects	
of that class.

Objects:

• An object is an instance of a class. It represents a real-world entity and has its own state and behavior.

• To create an object in Java, you use the new keyword followed by the constructor of the class.

• The constructor initializes the object and allocates memory for it.

Methods:

•	 Methods	are	functions	defined	within	a	class	that	perform	certain	actions	or	calculations.

•	 Methods	encapsulate	behavior	and	can	be	called	to	perform	specific	tasks	on	objects	of	the	class.

• Methods can have parameters (inputs) and return values (outputs).

Below is a simple Java program that demonstrates the creation and usage of classes, objects, and methods:

TASK 1: Calculate the area and perimeter of a rectangle using rectangle class demo
 //	Define	a	class	named	Rectangle

class	Rectangle	{

 // Instance variables

 double length;

 double width;

 // Constructor to initialize the rectangle with length and width

				Rectangle(double	l,	double	w)	{

© NIMI

NOT TO BE REPUBLISHED

85

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 94

 length = l;

 width = w;

 }

 // Method to calculate area of the rectangle

				double	calculateArea()	{

 return length * width;

 }

 // Method to calculate perimeter of the rectangle

				double	calculatePerimeter()	{

 return 2 * (length + width);

 }

}

//	Main	class	to	demonstrate	the	usage	of	Rectangle	class

public	class	RectangleDemo	{

				public	static	void	main(String[]	args)	{

								//	Create	an	object	of	Rectangle	class

								Rectangle	rect1	=	new	Rectangle(5.0,	3.0);

 // Accessing object properties and methods

 System.out.println(“Length: “ + rect1.length);

 System.out.println(“Width: “ + rect1.width);

 System.out.println(“Area: “ + rect1.calculateArea());

 System.out.println(“Perimeter: “ + rect1.calculatePerimeter());

 }

}

Output:

© NIMI

NOT TO BE REPUBLISHED

86

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 94

Explanation
• Rectangle class: It represents a simple geometric rectangle with two properties - length and width. It also

contains methods to calculate the area and perimeter of the rectangle.

• length and width	are	instance	variables	that	define	the	state	of	the	rectangle.
• The Rectangle constructor initializes the length and width of the rectangle when an object is created.

• calculateArea() and calculatePerimeter() are methods that calculate the area and perimeter of the rectangle,
respectively.

• RectangleDemo class:	It	serves	as	the	main	class	to	demonstrate	the	usage	of	the	Rectangle	class.
•	 In	the	main	method,	an	object	rect1	of	the	Rectangle	class	is	created	using	the	constructor.

• We access the properties of the rect1 object (length and width) and call its methods (calculateArea() and
calculatePerimeter()).

• The calculated area and perimeter are then printed to the console.

	 This	program	illustrates	the	concept	of	classes	and	objects	in	Java.	The	Rectangle	class	encapsulates	related	
data	and	behavior,	allowing	for	easier	management	and	manipulation.	By	creating	objects	of	the	Rectangle	
class,	we	can	instantiate	multiple	rectangles	with	different	dimensions	and	perform	operations	specific	to	each	
object.

Here are a few more Java programs demonstrating the creation and usage of classes, objects, and methods:

TASK 2: Student Class
class	Student	{

 // Instance variables

 String name;

 int age;

 double grade;

 // Constructor

				Student(String	n,	int	a,	double	g)	{

 name = n;

 age = a;

 grade = g;

 }

 // Method to display student information

				void	displayInfo()	{

 System.out.println(“Name: “ + name);

 System.out.println(“Age: “ + age);

 System.out.println(“Grade: “ + grade);

 }

}

public	class	StudentDemo	{

				public	static	void	main(String[]	args)	{

 // Create an object of Student class

© NIMI

NOT TO BE REPUBLISHED

87

COMPUTER SOFTWARE APPLICATION - CITS

								Student	student1	=	new	Student(“Alice”,	20,	85.5);

 // Accessing object properties and methods

 student1.displayInfo();

 }

}

Output:

Explanation:
• This	program	defines	a	Student	class	with	properties	like	name,	age,	and	grade.

• It has a constructor to initialize the instance variables.

• The displayInfo() method prints out the student’s information.

• In the main() method, an object student1 of the Student class is created and its properties are accessed using
the displayInfo() method.

TASK	3: Bank Account Class
class	BankAccount	{

 // Instance variables

 String accountNumber;

 double balance;

 // Constructor

				BankAccount(String	accNum,	double	initialBalance)	{

 accountNumber = accNum;

 balance = initialBalance;

 }

 // Method to deposit money

				void	deposit(double	amount)	{

 balance += amount;

 System.out.println(amount + “ deposited successfully.”);

 }

 // Method to withdraw money

				void	withdraw(double	amount)	{

CITS : IT & ITES - Computer Software Application - Exercise 94

© NIMI

NOT TO BE REPUBLISHED

88

COMPUTER SOFTWARE APPLICATION - CITS

								if	(balance	>=	amount)	{

 balance -= amount;

 System.out.println(amount + “ withdrawn successfully.”);

								}	else	{

												System.out.println(“Insufficient	funds.”);

 }

 }

 // Method to display account information

				void	displayAccountInfo()	{

 System.out.println(“Account Number: “ + accountNumber);

 System.out.println(“Balance: $” + balance);

 }

}

public	class	BankAccountDemo	{

				public	static	void	main(String[]	args)	{

 // Create an object of BankAccount class

								BankAccount	account1	=	new	BankAccount(“123456789”,	1000.0);

 // Deposit and withdraw operations

								account1.deposit(500.0);

								account1.withdraw(200.0);

 // Display account information

 account1.displayAccountInfo();

 }

}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 94

© NIMI

NOT TO BE REPUBLISHED

89

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:
•	 This	program	defines	a	BankAccount	class	with	properties	like	account	number	and	balance.

• It has a constructor to initialize the instance variables.

• The deposit() method deposits money into the account, withdraw() method withdraws money, and
displayAccountInfo() method displays the account information.

• In the main() method, an object account1 of the BankAccount class is created and operations like deposit,
withdraw, and display account information are performed.

These examples demonstrate how classes, objects, and methods are used in Java to model real-world entities
and perform operations on them. They encapsulate data and behavior within classes, promoting code reusability
and maintainability.

TASK	4: Car Class
 class	Car	{
 // Instance variables

 String make;

 String model;

 int year;

 // Constructor

				Car(String	make,	String	model,	int	year)	{

 this.make = make;

 this.model = model;

 this.year = year;

 }

 // Method to display car information

				void	displayInfo()	{

 System.out.println(“Make: “ + make);

 System.out.println(“Model: “ + model);

 System.out.println(“Year: “ + year);

 }

}

public	class	CarDemo	{

				public	static	void	main(String[]	args)	{

 // Create an object of Car class

								Car	myCar	=	new	Car(“Toyota”,	“Camry”,	2020);

 // Accessing object properties and methods

 myCar.displayInfo();

 }

}

CITS : IT & ITES - Computer Software Application - Exercise 94

© NIMI

NOT TO BE REPUBLISHED

90

COMPUTER SOFTWARE APPLICATION - CITS

Output :

Explanation:
•	 This	program	defines	a	Car	class	with	properties	like	make,	model,	and	year.

• It has a constructor to initialize the instance variables.

• The displayInfo() method prints out the car’s information.

• In the main() method, an object myCar of the Car class is created and its properties are accessed using the
displayInfo() method.

TASK	5: Circle Class
class	Circle	{

 // Instance variable

 double radius;

 // Constructor

				Circle(double	r)	{

 radius = r;

 }

 // Method to calculate area

				double	calculateArea()	{

 return Math.PI * radius * radius;

 }

 // Method to calculate circumference

				double	calculateCircumference()	{

 return 2 * Math.PI * radius;

 }

}

public	class	CircleDemo	{

				public	static	void	main(String[]	args)	{

 // Create an object of Circle class

CITS : IT & ITES - Computer Software Application - Exercise 94

© NIMI

NOT TO BE REPUBLISHED

91

COMPUTER SOFTWARE APPLICATION - CITS

								Circle	myCircle	=	new	Circle(5.0);

 // Accessing object properties and methods

 System.out.println(“Area of the circle: “ + myCircle.calculateArea());

 System.out.println(“Circumference of the circle: “ + myCircle.calculateCircumference());

 }

}

Output:

Explanation:
•	 This	program	defines	a	Circle	class	with	a	property	radius.

• It has a constructor to initialize the radius.

• The calculateArea() method calculates the area of the circle, and the calculateCircumference() method
calculates the circumference.

• In the main() method, an object myCircle of the Circle class is created, and its methods are called to calculate
the area and circumference of the circle.

These examples demonstrate how classes, objects, and methods can be used to model various entities and
perform operations on them in Java. They encapsulate data and behavior within classes, promoting code
organization, reusability, and maintainability.

CITS : IT & ITES - Computer Software Application - Exercise 94

© NIMI

NOT TO BE REPUBLISHED

92

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 95 : Pass data and Objects to Methods

At the end of this exercise you shall be able to
• know about how to pass data and objects to methods in JAVA
• develop Java programs using data and object passing to methods.

Tools/Materials
• PC/Laptop with Windows OS
• JDK Software
• Text Editor (Visual Studio/Sublime/Notepad)

Requirements

Procedure
In Java, you can pass data and objects to methods in various ways, such as passing primitive data types, passing
objects, and passing arrays. Below are examples of Java programs demonstrating these concepts:

1 Passing Primitive Data Types to Methods
TASK 1: Finding sum of two numbers

		public	class	PrimitiveDemo	{

			public	static	void	main(String[]	args)	{

								int	x	=	10;

								i	nt	y	=	20;

 // Passing primitive data types to a method

 int sum = add(x, y);

 System.ouwt.println(“Sum: “ + sum);

 }

 // Method to add two integers

				public	static	int	add(int	a,	int	b)	{

 return a + b;

 }

}

© NIMI

NOT TO BE REPUBLISHED

93

COMPUTER SOFTWARE APPLICATION - CITS

Output :

Explanation:
•	 In	this	program,	we	define	a	method	add	that	takes	two	integers	as	parameters	and	returns	their	sum.

• We declare variables x and y in the main method and assign values to them.

• We call the add method and pass x and y as arguments.

• The method performs addition on the provided integers and returns the result, which is then printed in the main
method.

Here’s another example demonstrating the concept of passing primitive data types to methods:

TASK 2: Finding the Maximum of Two Integers
public	class	MaximumDemo	{

				public	static	void	main(String[]	args)	{

								int	a	=	10;

								int	b	=	20;

								//	Calling	the	method	to	find	the	maximum	of	two	integers

								int	max	=	findMaximum(a,	b);

 System.out.println(“Maximum of “ + a + “ and “ + b + “ is: “ + max);

 }

				//	Method	to	find	the	maximum	of	two	integers

				public	static	int	findMaximum(int	x,	int	y)	{

 return (x > y) ? x : y;

 }

}

CITS : IT & ITES - Computer Software Application - Exercise 95

© NIMI

NOT TO BE REPUBLISHED

94

COMPUTER SOFTWARE APPLICATION - CITS

Output:

Explanation
•	 In	 this	program,	we	define	a	method	findMaximum	 that	 takes	 two	 integers	as	parameters	and	 returns	 the	

maximum of the two.

• We declare variables a and b in the main method and assign values to them.

•	 We	call	the	findMaximum	method	and	pass	a	and	b	as	arguments.

•	 Inside	the	findMaximum	method,	we	use	the	ternary	operator	to	determine	the	maximum	of	the	two	integers.

• The maximum value is returned and stored in the max variable in the main method.

• Finally, we print the maximum value to the console.

This	example	illustrates	how	to	pass	primitive	data	types,	such	as	integers,	to	methods	in	Java.	The	findMaximum	
method	encapsulates	 the	 logic	 for	finding	 the	maximum	of	 two	 integers,	which	promotes	code	reusability	and	
improves readability. When passing primitive data types to methods, the values of the variables are copied, and
changes	made	to	the	parameters	inside	the	method	do	not	affect	the	original	variables	in	the	calling	method.

2 Passing Objects to Methods
TASK 1: Employee Salary

class	Employee	{

 String name;

 double salary;

 // Constructor to initialize Employee object

				Employee(String	name,	double	salary)	{

 this.name = name;

 this.salary = salary;

 }

}

public	class	ObjectDemo	{

				public	static	void	main(String[]	args)	{

 // Creating an Employee object

								Employee	employee	=	new	Employee(“John”,	50000);

 // Passing the employee object to a method for display

 displayEmployeeDetails(employee);

CITS : IT & ITES - Computer Software Application - Exercise 95

© NIMI

NOT TO BE REPUBLISHED

95

COMPUTER SOFTWARE APPLICATION - CITS

 }

 // Method to display employee details

				public	static	void	displayEmployeeDetails(Employee	employee)	{

 System.out.println(“Employee Details:”);

 System.out.println(“Name: “ + employee.name);

 System.out.println(“Salary: “ + employee.salary);

 }

}

Output:

Explanation:

•	 This	program	defines	a	class	Employee	with	name	and	salary	attributes.

• We create an object employee of the Employee class and initialize it with name and salary values.

•	 We	define	a	method	displayEmployeeDetails	that	takes	an	Employee	object	as	a	parameter	and	displays	its	
details.

• In the main method, we call the displayEmployeeDetails method and pass the employee object as an argument.

TASK 2: Calculating Area and Perimeter of a Rectangle
class	Rectangle	{

 double length;

 double width;

				Rectangle(double	length,	double	width)	{

 this.length = length;

 this.width = width;

 }

 // Method to calculate the area of the rectangle

				double	calculateArea()	{

 return length * width;

CITS : IT & ITES - Computer Software Application - Exercise 95

© NIMI

NOT TO BE REPUBLISHED

96

COMPUTER SOFTWARE APPLICATION - CITS

 }

 // Method to calculate the perimeter of the rectangle

				double	calculatePerimeter()	{

 return 2 * (length + width);

 }

}

public	class	RectangleDemo	{

				public	static	void	main(String[]	args)	{

								//	Create	a	Rectangle	object

								Rectangle	rectangle	=	new	Rectangle(5.0,	3.0);

 // Display the calculated area and perimeter

 System.out.println(“Area of the rectangle: “ + rectangle.calculateArea());

 System.out.println(“Perimeter of the rectangle: “ + rectangle.calculatePerimeter());

 }

}

Output:

Explanation:

•	 In	this	program,	we	define	a	class	Rectangle	representing	a	rectangle	with	attributes	length	and	width.

•	 The	Rectangle	class	has	methods	calculateArea()	and	calculatePerimeter()	to	compute	the	area	and	perimeter	
of the rectangle, respectively.

•	 We	create	an	instance	of	the	Rectangle	class	named	rectangle	with	a	length	of	5.0	units	and	a	width	of	3.0	
units.

• We call the calculateArea() and calculatePerimeter() methods on the rectangle object to compute and display
its area and perimeter.

• Inside the methods, we access the length and width attributes of the object using the this keyword to perform
the calculations.

This example demonstrates how objects can encapsulate data and behavior within them, allowing us to perform
operations	on	them	effectively.	By	passing	objects	to	methods,	we	can	invoke	their	behavior	and	access	their	
state to perform various operations and computations, making the code more organized and modular.

CITS : IT & ITES - Computer Software Application - Exercise 95

© NIMI

NOT TO BE REPUBLISHED

97

COMPUTER SOFTWARE APPLICATION - CITS

TASK	3:	Updating Employee Salary
class	Employee	{

 String name;

 double salary;

				Employee(String	name,	double	salary)	{

 this.name = name;

 this.salary = salary;

 }

 // Method to raise the salary of an employee by a given percentage

				void	raiseSalary(double	percentage)	{

								double	raiseAmount	=	salary	*	(percentage	/	100);

 salary += raiseAmount;

 }

}

public	class	RaiseSalaryDemo	{

				public	static	void	main(String[]	args)	{

 // Create an Employee object

								Employee	emp	=	new	Employee(“John”,	50000);

 // Print current salary

 System.out.println(“Current salary of “ + emp.name + “: “ + emp.salary);

								//	Call	the	method	to	raise	the	salary	by	10%

								emp.raiseSalary(10);

 // Print updated salary

 System.out.println(“Updated salary of “ + emp.name + “: “ + emp.salary);

 }

}

 Output:

CITS : IT & ITES - Computer Software Application - Exercise 95

© NIMI

NOT TO BE REPUBLISHED

98

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:
1 Employee Class Definition

•	 The	program	begins	by	defining	a	class	named	Employee.

• This class encapsulates attributes such as name and salary.

•	 It	also	 includes	a	method	named	raiseSalary	designed	to	 increase	an	employee’s	salary	by	a	specified	
percentage.

2 Create Employee Object and Print Current Salary
• Within the main method, an instance of the Employee class is created and named emp.

• The program prints the current salary of the employee (emp) to the console.

3	 Method to Raise Employee Salary
• A method named raiseEmployeeSalary is introduced.

• This method takes an Employee object and a percentage as parameters.

• Internally, it calls the raiseSalary method of the Employee object, leading to an increase in the salary.

4	 Raise Employee Salary in Main Method
• The raiseEmployeeSalary method is invoked within the main method, aiming to raise the salary of the

employee	(emp)	by	10%.

5	 Print Updated Salary
•	 Subsequently,	the	program	prints	the	updated	salary	of	the	employee	(emp)	to	reflect	the	changes	made	

by the raiseEmployeeSalary method.

6	 Conclusion
•	 This	program	serves	as	a	practical	example	of	how	to	pass	objects,	specifically	instances	of	the	Employee	

class, to methods in Java.

• The design of the Employee class, along with the use of methods, illustrates the principles of object-
oriented	programming	(OOP),	encapsulation,	and	the	effective	modification	of	object	states.

	 This	explanation	aims	to	provide	a	conceptual	understanding	of	the	program	without	delving	into	the	specific	
code	details.	If	you	have	further	questions	or	need	clarification	on	any	specific	aspect,	feel	free	to	ask!

CITS : IT & ITES - Computer Software Application - Exercise 95

© NIMI

NOT TO BE REPUBLISHED

99

COMPUTER SOFTWARE APPLICATION - CITS

3 Passing Arrays to Methods
TASK 1: to pass data and objects to methods in Java programs

public	class	ArrayDemo	{

				public	static	void	main(String[]	args)	{

								int[]	numbers	=	{1,	2,	3,	4,	5};

 // Passing an array to a method

 printArray(numbers);

 }

 // Method to print array elements

				public	static	void	printArray(int[]	arr)	{

 System.out.println(“Array elements:”);

								for	(int	num	:	arr)	{

 System.out.print(num + “ “);

 }

 }

}

Output:

Explanation:
•	 In	this	program,	we	define	an	array	numbers	containing	integers.

•	 We	define	a	method	printArray	that	takes	an	array	of	integers	as	a	parameter	and	prints	its	elements.

• In the main method, we call the printArray method and pass the numbers array as an argument.

These examples demonstrate how to pass data and objects to methods in Java programs. It’s important to note
that Java is pass-by-value, meaning that when you pass a parameter to a method, a copy of the parameter’s
value is passed, not the actual object itself. For objects, the value passed is the reference to the object in memory.
Thus,	changes	made	to	parameters	inside	the	method	are	reflected	in	the	original	objects	or	variables	if	they	are	
mutable.

CITS : IT & ITES - Computer Software Application - Exercise 95

© NIMI

NOT TO BE REPUBLISHED

100

COMPUTER SOFTWARE APPLICATION - CITS

TASK 2: Finding the Maximum Element in an Array
 public	class	MaxElementDemo	{
				public	static	void	main(String[]	args)	{

								int[]	numbers	=	{10,	30,	20,	50,	40};

 System.out.print(“Element in the array: “);

								//	Calling	the	method	to	find	the	maximum	element

								int	max	=	findMaxElement(numbers);

 System.out.println();

 System.out.println(“Maximum element in the array: “ + max);

 }

							//	Method	to	find	the	maximum	element	in	an	array

				public	static	int	findMaxElement(int[]	arr)	{

								int	max	=	arr[0];

								for	(int	i	=	1;	i	<	arr.length;	i++)	{

 System.out.print(arr[i] +” “);

												if	(arr[i]	>	max)	{

 max = arr[i];

 }

 }

 return max;

 }

}

Output:

Explanation:
•	 In	 this	program,	we	define	a	method	findMaxElement	 that	 takes	an	array	of	 integers	as	a	parameter	and	

returns the maximum element in the array.

• We declare an array numbers containing integers in the main method.

•	 We	call	the	findMaxElement	method	and	pass	the	numbers	array	as	an	argument.

CITS : IT & ITES - Computer Software Application - Exercise 95

© NIMI

NOT TO BE REPUBLISHED

101

COMPUTER SOFTWARE APPLICATION - CITS

•	 Inside	the	findMaxElement	method,	we	iterate	through	the	array	elements	and	update	the	max	variable	if	we	
encounter a larger element.

• The maximum element is returned and stored in the max variable in the main method.

• Finally, we print the maximum element to the console.

TASK	3:	Calculating the Sum of Array Elements
public	class	SumArrayDemo	{

				public	static	void	main(String[]	args)	{

								double[]	values	=	{2.5,	3.0,	4.5,	1.5,	2.0};

 // Calling the method to calculate the sum of array elements

 double sum = calculateSum(values);

 System.out.println(“Sum of array elements: “ + sum);

 }

 // Method to calculate the sum of array elements

				public	static	double	calculateSum(double[]	arr)	{

								double	sum	=	0;

								for	(double	value	:	arr)	{

 sum += value;

 }

 return sum;

 }

}

Output:

Explanation:
•	 In	this	program,	we	define	a	method	calculateSum	that	takes	an	array	of	doubles	as	a	parameter	and	returns	

the sum of the array elements.

• We declare an array values containing double values in the main method.

• We call the calculateSum method and pass the values array as an argument.

• Inside the calculateSum method, we iterate through the array elements and accumulate their sum in the sum
variable.

CITS : IT & ITES - Computer Software Application - Exercise 95

© NIMI

NOT TO BE REPUBLISHED

102

COMPUTER SOFTWARE APPLICATION - CITS

• The sum of array elements is returned and stored in the sum variable in the main method.

• Finally, we print the sum of array elements to the console.

These examples illustrate how to pass arrays to methods in Java. By passing arrays to methods, we can perform
operations	on	arrays	effectively	and	encapsulate	array-related	logic	within	methods,	promoting	code	reusability	
and readability.

TASK	4:	Reversing an Array
 	//	Reverse	Array	Demo
public	class	ReverseArrayDemo	{

				public	static	void	main(String[]	args)	{

								int[]	numbers	=	{1,	2,	3,	4,	5};

 // Displaying the original array

 System.out.print(“Original array : “);

								for	(int	num	:	numbers)	{

 System.out.print(num + “ “);

 }

 // Calling the method to reverse the array

 reverseArray(numbers);

 // Displaying the reversed array

 System.out.println();

								System.out.print(“Reversed	array:	“);

								for	(int	num	:	numbers)	{

 System.out.print(num + “ “);

 }

 }

 // Method to reverse an array

				public	static	void	reverseArray(int[]	numbers)	{

								int	left	=	0;

 int right = numbers.length - 1;

								while	(left	<	right)	{

 // Swap elements at left and right indices

 int temp = numbers[left];

 numbers[left] = numbers[right];

 numbers[right] = temp;

 // Move left index to the right and right index to the left

 left++;

 right--;

 }

 }

}

CITS : IT & ITES - Computer Software Application - Exercise 95

© NIMI

NOT TO BE REPUBLISHED

103

COMPUTER SOFTWARE APPLICATION - CITS

Output:

Explanation:
•	 In	this	program,	we	define	a	method	reverseArray	that	takes	an	array	of	integers	as	a	parameter	and	reverses	

the elements of the array in place.

• We declare an array numbers containing integers in the main method.

• We call the reverseArray method and pass the numbers array as an argument.

• Inside the reverseArray method, we use two pointers (left and right) to traverse the array from both ends and
swap the elements until they meet in the middle.

• After reversing the array, we display the elements of the reversed array in the main method.

TASK	5:	Checking if an Array is Sorted in Ascending Order
 public	class	SortedArrayDemo	{
				public	static	void	main(String[]	args)	{

								int[]	numbers	=	{1,	3,	5,	7,	9};

 // Calling the method to check if the array is sorted

 boolean sorted = isSorted(numbers);

								if	(sorted)	{

 System.out.println(“The array is sorted in ascending order.”);

								}	else	{

 System.out.println(“The array is not sorted in ascending order.”);

 }

 }

 // Method to check if an array is sorted in ascending order

				public	static	boolean	isSorted(int[]	arr)	{

								for	(int	i	=	0;	i	<	arr.length	-	1;	i++)	{

												if	(arr[i]	>	arr[i	+	1])	{

 return false;

 }

 }

 return true;

 }

}

CITS : IT & ITES - Computer Software Application - Exercise 95

© NIMI

NOT TO BE REPUBLISHED

104

COMPUTER SOFTWARE APPLICATION - CITS

Output:

Explanation:
•	 In	this	program,	we	define	a	method	isSorted	that	takes	an	array	of	integers	as	a	parameter	and	checks	if	the	

elements of the array are sorted in ascending order.

• We declare an array numbers containing integers in the main method.

• We call the isSorted method and pass the numbers array as an argument.

• Inside the isSorted method, we iterate through the array and compare adjacent elements to check if they are
in ascending order.

• If any element is greater than the next element, we return false, indicating that the array is not sorted.

• If all elements are in ascending order, we return true, indicating that the array is sorted.

These examples demonstrate various operations that can be performed on arrays by passing them to methods in
Java. Passing arrays to methods allows us to encapsulate array-related logic and promote code reusability and
readability.

CITS : IT & ITES - Computer Software Application - Exercise 95

© NIMI

NOT TO BE REPUBLISHED

105

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 96 : Return data and Objects from Methods

At the end of this exercise you shall be able to
• know about how to return data and objects from methods in JAVA
• develop Java programs to return data and object from methods.

Tools/Materials
• PC/Laptop with Windows OS
• JDK Software
• Text Editor (Visual Studio/Sublime/Notepad)

Requirements

Procedure
Below are examples of Java programs demonstrating returning data and objects from methods:

TASK 1: Returning the Maximum of Two Numbers
	public	class	MaxNumberDemo	{

				public	static	void	main(String[]	args)	{

								int	a	=	10;

								int	b	=	20;

								//	Calling	the	method	to	find	the	maximum	of	two	numbers

								int	max	=	findMax(a,	b);

 System.out.println(“Maximum of “ + a + “ and “ + b + “ is: “ + max);

 }

				//	Method	to	find	the	maximum	of	two	numbers

				public	static	int	findMax(int	x,	int	y)	{

 return (x > y) ? x : y;

 }

}

Output:

© NIMI

NOT TO BE REPUBLISHED

106

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:

•	 In	this	program,	we	define	a	method	findMax	that	takes	two	integers	as	parameters	and	returns	the	maximum	
of the two.

• We declare variables a and b in the main method and assign values to them.

•	 We	call	the	findMax	method	and	pass	a	and	b	as	arguments.

•	 Inside	the	findMax	method,	we	use	the	ternary	operator	to	determine	the	maximum	of	the	two	integers.

• The maximum value is returned and stored in the max variable in the main method.

• Finally, we print the maximum value to the console.

TASK 2: Generating a Random Number
import	java.util.Random;

public	class	RandomNumberDemo	{

				public	static	void	main(String[]	args)	{

 // Calling the method to generate a random number

								int	randomNumber	=	generateRandomNumber();

 System.out.println(“Generated random number: “ + randomNumber);

 }

 // Method to generate a random number

				public	static	int	generateRandomNumber()	{

								Random	random	=	new	Random();

								return	random.nextInt(100);	//	Generates	a	random	number	between	0	and	99

 }

}

Output:

Explanation:
•	 In	this	program,	we	import	the	Random	class	from	the	java.util	package	to	generate	random	numbers.

•	 We	define	a	method	generateRandomNumber	that	returns	a	randomly	generated	integer.

•	 Inside	the	generateRandomNumber	method,	we	create	an	instance	of	the	Random	class	and	use	its	nextInt	
method	to	generate	a	random	integer	between	0	and	99.

• The generated random number is returned to the main method, where it is stored in the randomNumber
variable.

• Finally, we print the generated random number to the console.

CITS : IT & ITES - Computer Software Application - Exercise 96

© NIMI

NOT TO BE REPUBLISHED

107

COMPUTER SOFTWARE APPLICATION - CITS

These	examples	demonstrate	how	to	return	data	from	methods	in	Java.	The	findMax	method	returns	the	maximum	
of	two	numbers,	while	the	generateRandomNumber	method	returns	a	randomly	generated	integer.	By	returning	
data from methods, we can encapsulate logic and computations, making our code more modular and reusable.

TASK	3:	Calculating the Factorial of a Number
public	class	FactorialDemo	{

				public	static	void	main(String[]	args)	{

								int	n	=	5;

 // Calling the method to calculate the factorial of a number

 long factorial = calculateFactorial(n);

 System.out.println(“Factorial of “ + n + “ is: “ + factorial);

 }

 // Method to calculate the factorial of a number

				public	static	long	calculateFactorial(int	n)	{

								if	(n	==	0)	{

 return 1;

								}	else	{

 long factorial = 1;

												for	(int	i	=	1;	i	<=	n;	i++)	{

 factorial *= i;

 }

 return factorial;

 }

 }

}

Output:

Explanation:
•	 In	this	program,	we	define	a	method	calculateFactorial	that	takes	an	integer	n	as	a	parameter	and	returns	the	

factorial of n.

• We declare a variable n in the main method and assign a value to it.

• We call the calculateFactorial method and pass n as an argument.

• Inside the calculateFactorial method, we use a for loop to calculate the factorial of n.

CITS : IT & ITES - Computer Software Application - Exercise 96

© NIMI

NOT TO BE REPUBLISHED

108

COMPUTER SOFTWARE APPLICATION - CITS

• The calculated factorial is returned to the main method, where it is stored in the factorial variable.

• Finally, we print the factorial of n to the console.

TASK	4:	Generating Fibonacci Series
public	class	FibonacciDemo	{

				public	static	void	main(String[]	args)	{

								int	n	=	10;

 // Calling the method to generate Fibonacci series

 System.out.println(“Fibonacci series:”);

								for	(int	i	=	0;	i	<	n;	i++)	{

												System.out.print(fibonacci(i)	+	“	“);

 }

 }

 // Method to generate the nth Fibonacci number

				public	static	int	fibonacci(int	n)	{

								if	(n	<=	1)	{

 return n;

								}	else	{

												return	fibonacci(n	-	1)	+	fibonacci(n	-	2);

 }

 }

}

Output:

Explanation:

•	 In	this	program,	we	define	a	method	fibonacci	 that	takes	an	integer	n	as	a	parameter	and	returns	the	n-th	
Fibonacci number.

• We declare a variable n in the main method and assign a value to it.

•	 We	iterate	from	0	to	n	in	the	main	method	and	print	the	Fibonacci	series	using	the	fibonacci	method.

•	 Inside	the	fibonacci	method,	we	use	recursion	to	calculate	the	Fibonacci	number	for	each	value	of	n.

• The calculated Fibonacci number is returned to the caller.

These examples illustrate how to return data from methods in Java. The calculateFactorial method returns the
factorial	of	a	number,	while	the	fibonacci	method	returns	the	nth	Fibonacci	number.	Returning	data	from	methods	
allows us to perform calculations and computations, making our code more modular and reusable.

CITS : IT & ITES - Computer Software Application - Exercise 96

© NIMI

NOT TO BE REPUBLISHED

109

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 97 : Use constructors in JAVA

At the end of this exercise you shall be able to
• know about constructors and its function in JAVA
•	 develop	Java	programs	using	different	constructors	such	as	default	and	parameterised	constructors
• develop Java programs using Constructor chaining.

Tools/Materials
• PC/Laptop with Windows OS
• JDK Software
• Text Editor (Visual Studio/Sublime/Notepad)

Requirements

Procedure
Constructors in Java can have various forms, including default constructors, parameterized constructors, and
constructor chaining. Here are examples demonstrating the use of various constructors in Java:

1 Default Constructor:
TASK 1: Area of Rectangle

//	Area	of	Rectangle	using		default	constructor

	class	Rectangle	{

 double length;

 double width;

 // Default constructor

				Rectangle()	{

								length	=	0;

								width	=	0;

 }

 // Method to calculate the area of the rectangle

				double	calculateArea()	{

 return length * width;

 }

}

public	class	Rectangle_Demo	{

				public	static	void	main(String[]	args)	{

								//	Creating	an	instance	of	Rectangle	using	the	default	constructor

								Rectangle	rectangle	=	new	Rectangle();

 // Displaying the area of the rectangle

© NIMI

NOT TO BE REPUBLISHED

110

COMPUTER SOFTWARE APPLICATION - CITS

 System.out.println(“Area of the rectangle: “ + rectangle.calculateArea());

 }

}

Output:

Explanation:

•	 In	this	program,	we	define	a	class	Rectangle	with	attributes	length	and	width.

•	 We	provide	a	default	constructor	for	the	Rectangle	class,	which	initializes	the	length	and	width	attributes	to	
zero.

•	 In	the	main	method,	we	create	an	instance	of	the	Rectangle	class	using	the	default	constructor.

•	 We	call	the	calculateArea	method	of	the	Rectangle	class	to	calculate	and	display	the	area	of	the	rectangle.

TASK 2: Default Constructor with Initialization: Area of a Circle
//Area of a Circle using Default Constructor with Initialization

	class	Circle	{

 double radius;

 // Default constructor

				Circle()	{

								radius	=	1.0;	//	Initialize	radius	to	a	default	value

 }

 // Method to calculate the area of the circle

				double	calculateArea()	{

 return Math.PI * radius * radius;

 }

}

public	class	Circle_Demo	{

				public	static	void	main(String[]	args)	{

 // Creating an instance of Circle using the default constructor

 Circle circle = new Circle();

 // Displaying the area of the circle

 System.out.println(“Area of the circle: “ + circle.calculateArea());

CITS : IT & ITES - Computer Software Application - Exercise 97

© NIMI

NOT TO BE REPUBLISHED

111

COMPUTER SOFTWARE APPLICATION - CITS

 }

}

Output:

Explanation:
•	 In	this	program,	we	define	a	class	Circle	with	an	attribute	radius.

•	 We	provide	a	default	constructor	for	the	Circle	class,	which	initializes	the	radius	attribute	to	a	default	value	(1.0	
in this case).

• In the main method, we create an instance of the Circle class using the default constructor.

• We call the calculateArea method of the Circle class to calculate and display the area of the circle.

TASK	3:	Default Constructor in a Bank Account Class
// Bank Account using default constructors

class	BankAccount	{

 String accountNumber;

 double balance;

 // Default constructor

				BankAccount()	{

								accountNumber	=	“0000000000”;	//	Default	account	number

								balance	=	0.0;	//	Initialize	balance	to	zero

 }

 // Method to display account details

				void	displayAccountDetails()	{

 System.out.println(“Account Number: “ + accountNumber);

 System.out.println(“Balance: “ + balance);

 }

}

public	class	BankAccount_Demo	{

				public	static	void	main(String[]	args)	{

 // Creating an instance of BankAccount using the default constructor

 BankAccount account = new BankAccount();

CITS : IT & ITES - Computer Software Application - Exercise 97

© NIMI

NOT TO BE REPUBLISHED

112

COMPUTER SOFTWARE APPLICATION - CITS

 // Displaying account details

 account.displayAccountDetails();

 }

}

Output:

Explanation:
•	 In	this	program,	we	define	a	class	BankAccount	with	attributes	accountNumber	and	balance.

• We provide a default constructor for the BankAccount class, which initializes the accountNumber attribute to
a	default	value	(“0000000000”)	and	the	balance	attribute	to	zero.

• In the main method, we create an instance of the BankAccount class using the default constructor.

• We call the displayAccountDetails method of the BankAccount class to display the account details.

Default constructors are invoked automatically when an object is created if no other constructor is explicitly
defined.	They	initialize	the	object’s	attributes	to	default	values,	ensuring	that	the	object	is	in	a	consistent	state	
upon	creation.	Default	constructors	are	particularly	useful	when	no	specific	initialization	is	required.

2 Parameterized Constructor
TASK 1: Salary details of an employee

//Salary details of an employee

class	Employee	{

 String name;

 double salary;

 // Parameterized constructor

				Employee(String	name,	double	salary)	{

 this.name = name;

 this.salary = salary;

 }

 // Method to display employee details

				void	displayDetails()	{

 System.out.println(“Name: “ + name);

 System.out.println(“Salary: “ + salary);

 }

CITS : IT & ITES - Computer Software Application - Exercise 97

© NIMI

NOT TO BE REPUBLISHED

113

COMPUTER SOFTWARE APPLICATION - CITS

}

public	class	Employee_Demo	{

				public	static	void	main(String[]	args)	{

 // Creating an instance of Employee using the parameterized constructor

								Employee	employee	=	new	Employee(“John”,	50000);

 // Displaying employee details

 employee.displayDetails();

 }

}

Output:

Explanation:
•	 In	this	program,	we	define	a	class	Employee	with	attributes	name	and	salary.

• We provide a parameterized constructor for the Employee class, which initializes the name and salary attributes
with the values passed as arguments.

• In the main method, we create an instance of the Employee class using the parameterized constructor, passing
values for the name and salary.

• We call the displayDetails method of the Employee class to display the employee details.

These	examples	demonstrate	the	use	of	different	types	of	constructors	in	Java.	Constructors	are	used	to	initialize	
the state of objects during their creation. Default constructors initialize the attributes to default values, while
parameterized	 constructors	 allow	 us	 to	 initialize	 the	 attributes	with	 specific	 values.	Understanding	 and	 using	
constructors	effectively	is	essential	for	object-oriented	programming	in	Java.

CITS : IT & ITES - Computer Software Application - Exercise 97

TASK 2: Parameterized Constructor in a Rectangle Class
// Area of a rectangle using Parameterized Constructor

class	Rectangle	{

 double length;

 double width;

 // Parameterized constructor

				Rectangle(double	length,	double	width)	{

 this.length = length;

© NIMI

NOT TO BE REPUBLISHED

114

COMPUTER SOFTWARE APPLICATION - CITS

 this.width = width;

 }

 // Method to calculate the area of the rectangle

				double	calculateArea()	{

 return length * width;

 }

}

public	class	RectangleDemo	{

				public	static	void	main(String[]	args)	{

								//	Creating	an	instance	of	Rectangle	using	the	parameterized	constructor

								Rectangle	rectangle	=	new	Rectangle(5.0,	3.0);

 // Displaying the area of the rectangle

 System.out.println(“Area of the rectangle: “ + rectangle.calculateArea());

 }

}

Output:

Explanation:
•	 In	this	program,	we	define	a	class	Rectangle	with	attributes	length	and	width.

•	 We	provide	a	parameterized	constructor	for	the	Rectangle	class,	which	initializes	the	length	and	width	attributes	
with the values passed as parameters.

•	 In	the	main	method,	we	create	an	instance	of	the	Rectangle	class	using	the	parameterized	constructor,	passing	
specific	values	for	the	length	and	width.

•	 We	call	the	calculateArea	method	of	the	Rectangle	class	to	calculate	and	display	the	area	of	the	rectangle.

CITS : IT & ITES - Computer Software Application - Exercise 97

TASK	3:	Parameterized Constructor in a Student Class
// Student Class using Parameterized Constructor

class	Student	{

 String name;

 int age;

© NIMI

NOT TO BE REPUBLISHED

115

COMPUTER SOFTWARE APPLICATION - CITS

 // Parameterized constructor

				Student(String	name,	int	age)	{

 this.name = name;

 this.age = age;

 }

 // Method to display student details

				void	displayDetails()	{

 System.out.println(“Name: “ + name);

 System.out.println(“Age: “ + age);

 }

}

public	class	StudentDemo	{

				public	static	void	main(String[]	args)	{

 // Creating an instance of Student using the parameterized constructor

								Student	student	=	new	Student(“John”,	20);

 // Displaying student details

 student.displayDetails();

 }

}

Explanation:
•	 In	this	program,	we	define	a	class	Student	with	attributes	name	and	age.

• We provide a parameterized constructor for the Student class, which initializes the name and age attributes
with the values passed as parameters.

• In the main method, we create an instance of the Student class using the parameterized constructor, passing
specific	values	for	the	name	and	age.

• We call the displayDetails method of the Student class to display the student details.

Parameterized	 constructors	 allow	 you	 to	 initialize	 object	 attributes	 with	 specific	 values	 at	 the	 time	 of	 object	
creation.	They	provide	flexibility	and	convenience	in	setting	initial	state	for	objects,	making	them	ready	for	use.

CITS : IT & ITES - Computer Software Application - Exercise 97

3 Constructor chaining in Java
 Constructor chaining in Java refers to the process of calling one constructor from another constructor within

the same class or from the constructor of the superclass. Here are examples of constructor chaining with
explanations:

TASK 1: Constructor Chaining within the Same Class
class	Student	{

 String name;

 int age;

 // Parameterized constructor

© NIMI

NOT TO BE REPUBLISHED

116

COMPUTER SOFTWARE APPLICATION - CITS

				Student(String	name,	int	age)	{

 this.name = name;

 this.age = age;

 }

 // Method to display student details

				void	displayDetails()	{

 System.out.println(“Employee Details “);

 System.out.println(“-----------------”);

 System.out.println(“Name: “ + name);

 System.out.println(“Age: “ + age);

 }

}

public	class	Student_Demo	{

				public	static	void	main(String[]	args)	{

 // Creating an instance of Student using the parameterized constructor

								Student	student	=	new	Student(“John”,	20);

 // Displaying student details

 student.displayDetails();

 }

}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 97

Explanation:
• In this example, we have a class MyClass with three constructors.

•	 The	first	constructor	calls	the	second	constructor	using	this(0,	0),	which	initializes	x	and	y	to	0.

• The second constructor calls the third constructor using this(x, y, “Default”), which initializes x, y, and name.

• The third constructor initializes all the attributes x, y, and name based on the provided arguments.

•	 In	the	main	method,	we	create	an	instance	of	MyClass	using	the	first	constructor,	which	in	turn	triggers	the	
chain of constructors.

• The display method is called to print the object’s attributes.

© NIMI

NOT TO BE REPUBLISHED

117

COMPUTER SOFTWARE APPLICATION - CITS

TASK 2: Details of Persons
class	Person	{

 String name;

 int age;

 // Default constructor

				Person()	{

								this(“Unknown”,	0);	//	Call	parameterized	constructor	with	default	values

 }

 // Parameterized constructor with name

				Person(String	name)	{

								this(name,	0);	//	Call	parameterized	constructor	with	default	age

 }

 // Parameterized constructor with name and age

				Person(String	name,	int	age)	{

 this.name = name;

 this.age = age;

 }

				void	display()	{

 System.out.println(“Name: “ + name);

 System.out.println(“Age: “ + age);

 }

}

public	class	PersonDemo	{

				public	static	void	main(String[]	args)	{

								//	Creating	instances	of	Person	with	different	constructors

 Person person1 = new Person();

 Person person2 = new Person(“John”);

								Person	person3	=	new	Person(“Alice”,	25);

 // Displaying details of persons

 System.out.println(“Details of person1:”);

 person1.display();

 System.out.println(“\nDetails of person2:”);

 person2.display();

								System.out.println(“\nDetails	of	person3:”);

								person3.display();

 }

}

CITS : IT & ITES - Computer Software Application - Exercise 97

© NIMI

NOT TO BE REPUBLISHED

118

COMPUTER SOFTWARE APPLICATION - CITS

Output:

Explanation:
• In this program, we have a class Person with three constructors.

• The default constructor initializes the person with default values by calling the parameterized constructor with
default values.

• The parameterized constructor with only the name initializes the person with the provided name and default
age by calling the parameterized constructor with default age.

• The parameterized constructor with both name and age initializes the person with the provided name and age.

• The display method prints the details of the person, including name and age.

•	 In	the	main	method,	we	create	instances	of	Person	using	different	constructors	to	demonstrate	constructor	
chaining.

• Finally, we call the display method to print the details of each person.

This program illustrates how constructor chaining within the same class can be used to provide multiple ways
of object initialization while avoiding code duplication. It allows for cleaner and more concise code by reusing
constructor logic.

CITS : IT & ITES - Computer Software Application - Exercise 97

TASK	3:	Constructor Chaining with Superclass
class	Animal	{

 String species;

 // Constructor of superclass

				Animal(String	species)	{

 this.species = species;

 }

				void	displaySpecies()	{

© NIMI

NOT TO BE REPUBLISHED

119

COMPUTER SOFTWARE APPLICATION - CITS

 System.out.println(“Species: “ + species);

 }

}

class	Dog	extends	Animal	{

 String name;

 // Constructor of subclass

				Dog(String	species,	String	name)	{

 super(species); // Call superclass constructor

 this.name = name;

 }

				void	displayName()	{

 System.out.println(“Name: “ + name);

 }

}

public	class	ConstructorChainingSuperDemo	{

				public	static	void	main(String[]	args)	{

 // Creating an instance of Dog

 Dog dog = new Dog(“Canine”, “Buddy”);

 // Displaying species and name of the dog

 dog.displaySpecies();

 dog.displayName();

 }

}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 97

© NIMI

NOT TO BE REPUBLISHED

120

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:
• In this example, we have a superclass Animal and a subclass Dog.

• The superclass Animal has a parameterized constructor that initializes the species attribute.

• The subclass Dog has a parameterized constructor that initializes the name attribute and calls the superclass
constructor using super(species).

• In the main method, we create an instance of Dog with a species of “Canine” and a name of “Buddy”.

• We call methods to display the species and name of the dog.

Constructor chaining allows us to reuse code and avoid redundancy by calling one constructor from another. In
the	first	example,	the	constructor	chaining	within	the	same	class	helps	in	providing	multiple	ways	to	initialize	object	
attributes. In the second example, constructor chaining between superclass and subclass helps in initializing
attributes	of	both	classes	efficiently.

CITS : IT & ITES - Computer Software Application - Exercise 97

© NIMI

NOT TO BE REPUBLISHED

121

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 98 : Create and use Overloaded methods in
 JAVA

At the end of this exercise you shall be able to
• know overloaded methods in JAVA
• develop Java programs using overloaded methods.

Tools/Materials
• PC / laptop with windows OS
• SDK software
• Test editor (Visual studio/ subline/ notepad)

Requirements

Procedure
 TASK 1: Calculating the Area of Shapes

// Area of Shapes using overloaded methods

import java.io.*;

public class GeometricalShapes {

// Method to calculate the area of a square

public static double calculateArea(int side) {

return side * side;

}

// Method to calculate the area of a rectangle

public static double calculateArea(long length, long width) {

return length * width;

}

// Method to calculate the area of a circle

public static double calculateArea(double radius) {

return Math.PI * radius * radius;

}

// Method to calculate the area of a triangle

public static double calculateArea(double base, double height) {

return 0.5 * base * height;

}

Overloaded methods in Java are methods that have the same name but different parameter lists. Here are
a few examples demonstrating the creation and usage of overloaded methods:

© NIMI

NOT TO BE REPUBLISHED

122

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 98

public static void main(String[] args) {

int side = 5;

long length =6L;

long width = 4L;

double radius = 3.0;

double base = 8.0;

double height = 5.0;

// Calculate areas using overloaded methods

System.out.println(“Area of square: “ + calculateArea(side));

System.out.println(“Area of rectangle: “ + calculateArea(length, width));

System.out.println(“Area of circle: “ + calculateArea(radius));

System.out.println(“Area of triangle: “ + calculateArea(base, height));

}

}

Explanation:
1 Method Overloading:

•	 The	program	uses	method	overloading	to	define	multiple	versions	of	the	calculateArea	method	with	
different	parameter	types	or	numbers.

• This allows the same method name to be used for calculating the area of various geometrical shapes.
2 Calculate Area of a Square:

•	 The	first	overloaded	method,	calculateArea(int	side),	is	designed	to	calculate	the	area	of	a	square.
• It takes an integer parameter (side) representing the side length and returns the calculated area using the

formula side * side.
3 Calculate Area of a Rectangle:

• The second overloaded method, calculateArea(long length, long width), is tailored for calculating the area
of a rectangle.

• It takes two long integer parameters (length and width) representing the length and width, and returns the
calculated area using the formula length * width.

4 Calculate Area of a Circle:
• The third overloaded method, calculateArea(double radius), is specialized for calculating the area of a

circle.
• It takes a double parameter (radius) representing the radius and returns the calculated area using the

formula Math.PI * radius * radius.
5 Calculate Area of a Triangle:

• The fourth overloaded method, calculateArea(double base, double height), is designed for calculating the
area of a triangle.

• It takes two double parameters (base and height) representing the base and height, and returns the
calculated area using the formula 0.5 * base * height.

6 Main Method:
• In the main method, sample values for the dimensions of a square, rectangle, circle, and triangle are

declared.
• The overloaded methods are then called with these values to calculate and print the areas of the

respective shapes.

© NIMI

NOT TO BE REPUBLISHED

123

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 98

Output:

The output displays the calculated areas for each shape.

Conclusion:
•	 The	program	effectively	demonstrates	the	concept	of	method	overloading	to	provide	a	single,	consistent	

interface	(calculateArea)	for	calculating	areas	of	different	geometrical	shapes.

•	 The	choice	of	appropriate	data	types	(int,	long,	double)	for	different	parameters	adds	flexibility	to	the	
program.

Overall, the program showcases a clean and modular approach to handle various geometrical calculations in a
concise manner.

TASK 2: Overloaded Methods for String Concatenation
// String Concatenation using Overloaded Methods
import java.io.*;
public class StringConcatenator {
// Method to concatenate two strings
public static String concatenate(String str1, String str2) {
return str1 + str2;
}
// Method to concatenate three strings
public static String concatenate(String str1, String str2, String str3) {
return str1 + str2 + str3;
}
public static void main(String[] args) {
String str1 = “Hello, “;
String str2 = “world!”;
String str3 = “How are you?”;
// Concatenate strings using overloaded methods
System.out.println(concatenate(str1, str2));
System.out.println(concatenate(str1, str2, str3));
}
}
Output:

CITS : IT & ITES - Computer Software Application - Exercise 98

© NIMI

NOT TO BE REPUBLISHED

124

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 98

Explanation:
• In this program, we have a class StringConcatenator with two overloaded methods named concatenate.

•	 The	first	method	concatenates	two	strings.

• The second method concatenates three strings.

•	 In	the	main	method,	we	call	each	of	the	overloaded	methods	to	concatenate	strings	with	different	numbers	of	
parameters.

These	examples	illustrate	how	overloaded	methods	allow	us	to	create	methods	with	the	same	name	but	
different	behaviors	based	on	the	parameters	passed	to	them.	It	enhances	code	readability	and	reusability	by	
providing multiple ways to accomplish a task.

TASK 3: Summing Numbers
// Summing Numbers using Overloaded Methods

public class SumCalculator {

// Method to sum two integers

public static int sum(int a, int b) {

return a + b;

}

// Method to sum three integers

public static int sum(int a, int b, int c) {

return a + b + c;

}

// Method to sum an array of integers

public static int sum(int[] numbers) {

int total = 0;

for (int num : numbers) {

total += num;

}

return total;

}

public static void main(String[] args) {

int num1 = 5;

int num2 = 10;

int num3 = 15;

int[] array = {3, 6, 9, 12};

// Calculate sums using overloaded methods

System.out.println(“Sum of two numbers: “ + sum(num1, num2));

System.out.println(“Sum of three numbers: “ + sum(num1, num2, num3));

System.out.println(“Sum of array elements: “ + sum(array));

}

}

© NIMI

NOT TO BE REPUBLISHED

125

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:
• In this program, we have a class SumCalculator with three overloaded methods named sum.

•	 The	first	method	sums	two	integers.

• The second method sums three integers.

• The third method sums an array of integers.

• In the main method, we call each of the overloaded methods to calculate the sum of two numbers, three
numbers, and an array of numbers.

TASK 4: Finding Maximum
//	To	find	the	Maximum	using	Overloaded	Methods
public	class	MaxFinder	{
//	Method	to	find	the	maximum	of	two	integers
public	static	int	max(int	a,	int	b)	{
return (a > b) ? a : b;
}
//	Method	to	find	the	maximum	of	three	integers
public	static	int	max(int	a,	int	b,	int	c)	{
return	max(max(a,	b),	c);	//	Using	recursion	to	find	the	maximum
}
public static void main(String[] args) {
int num1 = 15;
int num2 = 20;
int num3 = 10;
//	Find	maximum	using	overloaded	methods
System.out.println(“Maximum	of	two	numbers:	“	+	max(num1,	num2));
System.out.println(“Maximum	of	three	numbers:	“	+	max(num1,	num2,	num3));
}
}
Output:

CITS : IT & ITES - Computer Software Application - Exercise 98

© NIMI

NOT TO BE REPUBLISHED

126

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:
• In this program, we have a class MaxFinder with two overloaded methods named max.

•	 The	first	method	finds	the	maximum	of	two	integers.

•	 The	second	method	finds	the	maximum	of	three	integers	by	using	recursion	to	call	the	first	method.

• In the main	method,	we	call	each	of	the	overloaded	methods	to	find	the	maximum	of	two	numbers	and	three	
numbers.

These	examples	demonstrate	how	overloaded	methods	in	Java	allow	us	to	define	methods	with	the	same	name	
but	different	parameter	lists,	providing	flexibility	and	code	reuse	in	our	programs.	Overloaded	methods	simplify	
method naming and enhance code readability.

CITS : IT & ITES - Computer Software Application - Exercise 98

© NIMI

NOT TO BE REPUBLISHED

127

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 99 : Override methods in JAVA

At the end of this exercise you shall be able to
• know override methods in JAVA
• develop Java programs using override methods.

Tools/Materials
• PC / laptop with windows OS
• SDK software
• Test editor (Visual studio/ subline/ notepad)

Requirements

Procedure
 TASK 1: Shape and its Subclasses

// Shape and its Subclasses using override method

class Shape {

void draw() {

System.out.println(“Drawing a shape”);

}

}

class	Circle	extends	Shape	{

// Overriding the draw method of the superclass

@Override

void draw() {

System.out.println(“Drawing a circle”);

}

}

class	Rectangle	extends	Shape	{

// Overriding the draw method of the superclass

@Override

void draw() {

System.out.println(“Drawing a rectangle”);

}

}

Method overriding in Java allows a subclass to provide a specific implementation of a method that is
already provided by its superclass. Here’s an example demonstrating method overriding along with its
explanation:

© NIMI

NOT TO BE REPUBLISHED

128

COMPUTER SOFTWARE APPLICATION - CITS

public class ShapeDemo {

public static void main(String[] args) {

Shape shape1 = new Circle();

shape1.draw(); // Output: Drawing a circle

Shape shape2 = new Rectangle();

shape2.draw(); // Output: Drawing a rectangle

}

}

Output:

Explanation:
• In this program, we have a superclass Shape and two subclasses Circle and Rectangle.

• The Shape class has a method named draw() that prints “Drawing a shape”.

• Both Circle and Rectangle	classes	extend	the	Shape class and override the draw() method with their own
specific	implementations.

• In the ShapeDemo class, we create instances of Circle and Rectangle and assign them to references of
type Shape.

• When we call the draw() method on each object, the overridden version of the method is invoked based on
the actual object type, demonstrating dynamic dispatch.

• Method overriding allows us to provide specialized implementations of methods in subclasses, promoting
code reusability and polymorphic behavior.

TASK 2: Animal and its Subclasses
// Method overriding

class Animal {

void sound() {

System.out.println(“Animal makes a sound”);

}

}

class	Dog	extends	Animal	{

// Overriding the sound method of the superclass

@Override

void sound() {

System.out.println(“Dog barks”);

}

}

CITS : IT & ITES - Computer Software Application - Exercise 99

© NIMI

NOT TO BE REPUBLISHED

129

COMPUTER SOFTWARE APPLICATION - CITS

class	Cat	extends	Animal	{

// Overriding the sound method of the superclass

@Override

void sound() {

System.out.println(“Cat meows”);

}

}

public class AnimalDemo {

public static void main(String[] args) {

Animal animal1 = new Dog();

animal1.sound(); // Output: Dog barks

Animal animal2 = new Cat();

animal2.sound(); // Output: Cat meows

}

}

Output:

Explanation:
• In this program, we have a superclass Animal and two subclasses Dog and Cat.
• The Animal class has a method named sound() that prints “Animal makes a sound”.

• Both Dog and Cat	classes	extend	the	Animal	class	and	override	the	sound()	method	with	their	own	specific	
sound implementations.

• In the AnimalDemo class, we create instances of Dog and Cat and assign them to references of type
Animal.

• When we call the sound() method on each object, the overridden version of the method is invoked based on
the actual object type, demonstrating polymorphism and method overriding.

	 These	examples	illustrate	how	method	overriding	allows	subclasses	to	provide	specialized	implementations	
of	methods	inherited	from	their	superclass,	enabling	polymorphic	behavior	and	code	flexibility	in	Java.

TASK 3: Vehicle and its Subclasses
// Method Overriding

class Vehicle {

void accelerate() {

System.out.println(“Vehicle is accelerating”);

}

}

CITS : IT & ITES - Computer Software Application - Exercise 99CITS : IT & ITES - Computer Software Application - Exercise 99

© NIMI

NOT TO BE REPUBLISHED

130

COMPUTER SOFTWARE APPLICATION - CITS

class	Car	extends	Vehicle	{

// Overriding the accelerate method of the superclass

@Override

void accelerate() {

System.out.println(“Car is accelerating”);

}

}

class	Truck	extends	Vehicle	{

// Overriding the accelerate method of the superclass

@Override

void accelerate() {

System.out.println(“Truck is accelerating”);

}

}

public class VehicleDemo {

public static void main(String[] args) {

Vehicle vehicle1 = new Car();

vehicle1.accelerate(); // Output: Car is accelerating

Vehicle vehicle2 = new Truck();

vehicle2.accelerate(); // Output: Truck is accelerating

}

}

Explanation:
• In this program, we have a superclass Vehicle and two subclasses Car and Truck.

• The Vehicle class has a method named accelerate() that prints “Vehicle is accelerating”.

• Both Car and Truck	classes	extend	the	Vehicle class and override the accelerate() method with their own
specific	implementations.

• In the VehicleDemo class, we create instances of Car and Truck and assign them to references of type
Vehicle.

• When we call the accelerate() method on each object, the overridden version of the method is invoked
based on the actual object type, demonstrating polymorphism and method overriding.

TASK 4: Bank Account and its Subclasses
// Bank Account and its Subclasses using method overriding

class BankAccount {

double balance;

void deposit(double amount) {

balance += amount;

}

void withdraw(double amount) {

CITS : IT & ITES - Computer Software Application - Exercise 99

© NIMI

NOT TO BE REPUBLISHED

131

COMPUTER SOFTWARE APPLICATION - CITS

balance -= amount;

}

void displayBalance() {

System.out.println(“Balance: “ + balance);

}

}

class	SavingsAccount	extends	BankAccount	{

// Overriding the withdraw method of the superclass

@Override

void withdraw(double amount) {

if (balance - amount >= 1000) {

balance -= amount;

} else {

System.out.println(“Insufficient	balance”);

}

}

}

class	CurrentAccount	extends	BankAccount	{

// Overriding the withdraw method of the superclass

@Override

void withdraw(double amount) {

if (balance - amount >= 0) {

balance -= amount;

} else {

System.out.println(“Insufficient	balance”);

}

}

}

public class BankAccountDemo {

public static void main(String[] args) {

BankAccount account1 = new SavingsAccount();

account1.deposit(5000);

account1.withdraw(3000);

account1.displayBalance(); // Output: Balance: 2000

BankAccount account2 = new CurrentAccount();

account2.deposit(3000);

account2.withdraw(5000);

account2.displayBalance();	//	Output:	Insufficient	balance

CITS : IT & ITES - Computer Software Application - Exercise 99CITS : IT & ITES - Computer Software Application - Exercise 99

© NIMI

NOT TO BE REPUBLISHED

132

COMPUTER SOFTWARE APPLICATION - CITS

}

}

Output:

Explanation:
• In this program, we have a superclass BankAccount and two subclasses SavingsAccount and

CurrentAccount.
• The BankAccount class has methods for depositing, withdrawing, and displaying balance.

• Both SavingsAccount and CurrentAccount	classes	extend	the	BankAccount class and override the
withdraw()	method	with	their	own	specific	implementations	to	handle	withdrawal	rules.

• In the BankAccountDemo class, we create instances of SavingsAccount and CurrentAccount.
• When we call the withdraw() method on each object, the overridden version of the method is invoked based

on the actual object type, demonstrating polymorphism and method overriding.

	 These	examples	illustrate	how	method	overriding	enables	subclasses	to	provide	their	own	specific	
implementations	of	methods	inherited	from	their	superclass,	allowing	for	code	reuse	and	flexibility	in	Java	
programs.

CITS : IT & ITES - Computer Software Application - Exercise 99

© NIMI

NOT TO BE REPUBLISHED

133

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 100 : Create and use Super class, Sub class in
 JAVA

At the end of this exercise you shall be able to
• know the use of Super class and Sub class in JAVA
• develop Java programs using Super class and Sub class.

.Tools/Materials
• PC / laptop with windows OS
• SDK software
• Test editor (Visual studio/ subline/ notepad)

Requirements

Procedure
• In object-oriented programming, the concept of inheritance allows a subclass to inherit properties and behaviors

from a superclass. Here’s a simple Java program demonstrating the usage of a superclass and its subclass
along with explanations

TASK 1. Superclass and Subclass: Vehicle and Car Classes
// Superclass

class Vehicle {

 String brand;

 // Constructor

 Vehicle(String brand) {

 this.brand = brand;

 }

 void displayBrand() {

 System.out.println(“Brand: “ + brand);

 }

}

// Subclass

class Car extends Vehicle {

 int year;

 // Constructor

 Car(String brand, int year) {

 super(brand); // Call superclass constructor

 this.year = year;

© NIMI

NOT TO BE REPUBLISHED

134

COMPUTER SOFTWARE APPLICATION - CITS

 }

 void displayDetails() {

 System.out.println(“Brand: “ + brand + “, Year: “ + year);

 }

}

// Main class

public class VehicleDemo {

 public static void main(String[] args) {

 // Creating an instance of the Car class

 Car car = new Car(“Toyota”, 2022);

 // Calling methods from both Vehicle and Car classes

 car.displayBrand(); // Output: Brand: Toyota

 car.displayDetails(); // Output: Brand: Toyota, Year: 2022

 }

}

Output:

Explanation:
• In this program, we have a superclass Vehicle and a subclass Car.

• The Vehicle class has a brand attribute and a displayBrand() method to display the brand.

• The Car class extends the Vehicle class and adds its own attribute year and a displayDetails() method to
display the brand and year.

• In the Vehicle constructor, super(brand) is used to call the superclass constructor and initialize the brand
attribute.

• In the main method, we create an instance of the Car class with the brand “Toyota” and year 2022.

• We call methods from both the Vehicle and Car classes to demonstrate inheritance and method overriding.

• The superclass constructor is invoked using the super keyword within the subclass constructor to initialize
inherited attributes.

This program illustrates how superclasses and subclasses are used in Java to achieve code reuse and inheritance.
The subclass inherits attributes and methods from its superclass and can also provide its own unique attributes
and behaviors. This hierarchical relationship promotes code organization and reusability.

CITS : IT & ITES - Computer Software Application - Exercise 100

© NIMI

NOT TO BE REPUBLISHED

135

COMPUTER SOFTWARE APPLICATION - CITS

TASK 2: Employee and Manager Classes:
 // Superclass

class Employee {

 String name;

 double salary;

 // Constructor

 Employee(String name, double salary) {

 this.name = name;

 this.salary = salary;

 }

 void displayDetails() {

 System.out.println(“Name: “ + name);

 System.out.println(“Salary: $” + salary);

 }

}

// Subclass

class Manager extends Employee {

 String department;

 // Constructor

 Manager(String name, double salary, String department) {

 super(name, salary); // Call superclass constructor

 this.department = department;

 }

 @Override

 void displayDetails() {

 super.displayDetails(); // Call superclass method

 System.out.println(“Department: “ + department);

 }

}

// Main class

public class EmployeeDemo {

 public static void main(String[] args) {

CITS : IT & ITES - Computer Software Application - Exercise 100CITS : IT & ITES - Computer Software Application - Exercise 100

© NIMI

NOT TO BE REPUBLISHED

136

COMPUTER SOFTWARE APPLICATION - CITS

 // Create an instance of the Manager class

 Manager manager = new Manager(“John Doe”, 50000, “IT”);

 // Call the displayDetails method of the Manager class

 manager.displayDetails();

 }

}

Output:

 Explanation:
• In this program, we have a superclass Employee and a subclass Manager.
• The Employee class has attributes name and salary, and a method displayDetails() to display employee

details.

• The Manager class extends the Employee class and adds its own attribute department.
• The Manager class overrides the displayDetails() method to display manager-specific details along with

employee details.

• In the Manager constructor, super(name, salary) is used to call the superclass constructor and initialize
inherited attributes.

• In the main method, we create an instance of the Manager class with a name, salary, and department, and
call the displayDetails() method.

CITS : IT & ITES - Computer Software Application - Exercise 100

TASK 3: Shape and its Subclasses
// Superclass

class Shape {

 String color;

 // Constructor

 Shape(String color) {

 this.color = color;

 }

 void displayColor() {

 System.out.println(“Color: “ + color);

© NIMI

NOT TO BE REPUBLISHED

137

COMPUTER SOFTWARE APPLICATION - CITS

 }

}

// Subclass

class Circle extends Shape {

 double radius;

 // Constructor

 Circle(String color, double radius) {

 super(color); // Call superclass constructor

 this.radius = radius;

 }

 void displayRadius() {

 System.out.println(“Radius: “ + radius);

 }

}

// Main class

public class ShapeDemo {

 public static void main(String[] args) {

 // Create an instance of the Circle class

 Circle circle = new Circle(“Red”, 5.0);

 // Call the displayColor and displayRadius methods

 circle.displayColor();

 circle.displayRadius();

 }

}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 100CITS : IT & ITES - Computer Software Application - Exercise 100

© NIMI

NOT TO BE REPUBLISHED

138

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:
• In this program, we have a superclass Shape and a subclass Circle.

• The Shape class has an attribute color, and a method displayColor() to display the color.

• The Circle class extends the Shape class and adds its own attribute radius and a method displayRadius()
to display the radius.

• In the Circle constructor, super(color) is used to call the superclass constructor and initialize the inherited
attribute.

• In the main method, we create an instance of the Circle class with a color and radius, and call the displayColor()
and displayRadius() methods.

These examples demonstrate how superclasses and subclasses are used in Java to create hierarchical
relationships, promote code reusability, and achieve inheritance. The subclass inherits attributes and methods
from its superclass and can also add its own unique attributes and behaviors. This allows for code organization
and simplifies the maintenance and extension of software systems.

Demonstrate writing JAVA programs to :

CITS : IT & ITES - Computer Software Application - Exercise 100

© NIMI

NOT TO BE REPUBLISHED

139

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 101 : Create and run a thread

At the end of this exercise you shall be able to
• know the creation and execution of threads in Java
• develop Java programs using Super class and Sub class.

Tools/Materials
• PC / laptop with windows OS
• SDK software
• Test editor (Visual studio/ subline/ notepad)

Requirements

Procedure
In Java, a thread represents a single flow of execution within a program. Threads allow programs to perform
multiple tasks concurrently, making it possible to execute multiple pieces of code simultaneously.

TASK 1: Creating and activating a thread
public class MyThread1

{

// Main method

public static void main(String argvs[])

{

// creating an object of the Thread class using the constructor Thread(String name)

Thread t= new Thread(“My first thread”);

// the start() method moves the thread to the active state

t.start();

// getting the thread name by invoking the getName() method

String str = t.getName();

System.out.println(str);

}

}

Explanation:
Step 1: Develop the above code

• This code defines a class named MyThread1.

• The main method is the entry point of the program.

CITS : IT & ITES - Computer Software Application - Exercise 100

© NIMI

NOT TO BE REPUBLISHED

140

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 101

Step 2: Create a Thread Object

• A new instance of the Thread class is created.

• The constructor Thread(String name) is used to create the thread with the specified name (“My first thread”
in this case).

Step 3: Start the Thread

• The start() method is called on the thread object.

• This method initiates the execution of the thread and moves it to the active state.

• The thread will execute its run method in a separate thread of control.

Step 4: Get and Print Thread Name

• The getName() method is called on the thread object (t) to retrieve its name.

• The retrieved name is stored in the variable str.

• The name is then printed to the console using System.out.println().

Step 5: Execution and Output
• When you run this program, you will see the output as the name of the thread:

This program demonstrates creating a thread, starting it, and retrieving its name using the Thread class in Java.

© NIMI

NOT TO BE REPUBLISHED

141

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 102 : Create a thread by extending Thread class

At the end of this exercise you shall be able to
• know the extension of threads in Java
• develop Java programs using thread extension.

Tools/Materials
• PC / laptop with windows OS
• SDK software
• Test editor (Visual studio/ subline/ notepad)

Requirements

Procedure
Step 1: Define a class extending Thread

• A new class named ThreadExtends is defined, and it extends the Thread class.

• The run method is overridden to define the behavior of the thread.

• Inside the run method, there is a for loop that prints a message with the current loop variable.

Step 2: Create an instance and Start the Thread

CITS : IT & ITES - Computer Software Application - Exercise 101

© NIMI

NOT TO BE REPUBLISHED

142

COMPUTER SOFTWARE APPLICATION - CITS

• A new class named ThreadExtends is defined (this class contains the main method).

• Inside the main method:

• An instance of ThreadExtends is created and assigned to the variable t1.

• The start method is called on t1. This initiates the execution of the thread, and the run method of
ThreadExtends will be executed in a separate thread.

Step 3: Execution
When you run this program, it will output messages similar to the following:

CITS : IT & ITES - Computer Software Application - Exercise 102

© NIMI

NOT TO BE REPUBLISHED

143

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 103 : Create thread by implementing Runnable
 interface

At the end of this exercise you shall be able to
• know the creation and execution of threads in Java
• develop Java programs using Super class and Sub class.

Tools/Materials
• PC / laptop with windows OS
• SDK software
• Test editor (Visual studio/ subline/ notepad)

Requirements

Procedure
class MyRunnable implements Runnable {
private String message;
public MyRunnable(String message) {

 this.message = message;

 }

 @Override

 public void run() {

 for (int i = 0; i < 5; i++) {

 System.out.println(Thread.currentThread().getName() + “: “ + message + “ “ + i);

 }

 }

}

public class ThreadExample {

 public static void main(String args[]) {

 // Create instances of MyRunnable with different messages

 MyRunnable myRunnable1 = new MyRunnable(“Thread 1”);

 MyRunnable myRunnable2 = new MyRunnable(“Thread 2”);

 // Create Thread objects using MyRunnable instances

 Thread t1 = new Thread(myRunnable1, “Thread A”);

 Thread t2 = new Thread(myRunnable2, “Thread B”);

 // Start the threads

 t1.start();

 t2.start();

 }

}

CITS : IT & ITES - Computer Software Application - Exercise 102

© NIMI

NOT TO BE REPUBLISHED

144

COMPUTER SOFTWARE APPLICATION - CITS

Step 1: Create a Thread class

• A new class named MyRunnable is defined, and it implements the Runnable interface.

• The class includes a private field message and a constructor to set its value.

• The run method is overridden from the Runnable interface. It contains a loop that prints the thread name,
the message, and a loop variable.

Step 2: Create the main class (ThreadExample)

CITS : IT & ITES - Computer Software Application - Exercise 103

© NIMI

NOT TO BE REPUBLISHED

145

COMPUTER SOFTWARE APPLICATION - CITS

• A new class named ThreadExample is defined with a main method.

• Inside the main method:

• Two instances of MyRunnable are created with different messages.

• Two Thread instances (t1 and t2) are created, each initialized with a different MyRunnable instance and a
thread name.

• The start method is called on each Thread instance, initiating the execution of the run method in a separate
thread.

Step 3: Execution

• When the program runs, two threads (t1 and t2) are created, and each executes its run method independently.

• The run method contains a loop that prints the thread name, the specified message, and a loop variable
from 0 to 4.

• As a result, you’ll see interleaved output from both threads, showing the concurrent execution.

CITS : IT & ITES - Computer Software Application - Exercise 103CITS : IT & ITES - Computer Software Application - Exercise 103

© NIMI

NOT TO BE REPUBLISHED

146

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 104 : Use major thread methods

At the end of this exercise you shall be able to
• know the Major Thread Methods in Java
• develop Java programs using Thread Methods.

Tools/Materials
• PC / laptop with windows OS
• SDK software
• Test editor (Visual studio/ subline/ notepad)

Requirements

Procedure
1 sleep(long millis) Method:
• Purpose: Pauses the execution of the current thread for the specified number of milliseconds.

• Syntax:Thread.sleep(long millis)
• Parameters:
millis: The duration, in milliseconds, for which the thread should sleep.

• Use Case: Used to introduce delays or pauses in the execution of a thread.

public class SleepExample extends Thread {

 public void run() {

 System.out.println(“Thread is running...”);

 // Simulate some work

 for (int i = 0; i < 5; i++) {

 System.out.println(Thread.currentThread().getId() + “ Value “ + i);

 try {

 Thread.sleep(500);

 } catch (InterruptedException e) {

 System.out.println(“Thread interrupted”);

 // Handle the exception or propagate it further if necessary

 }

 }

 }

 public static void main(String args[]) {

 SleepExample sleepThread = new SleepExample();

 sleepThread.start();

 }

}

© NIMI

NOT TO BE REPUBLISHED

147

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:
1 SleepExample Class:

• This class extends the Thread class, indicating that instances of this class can be executed as separate
threads.

2 run() Method:
• The run() method overrides the run() method of the Thread class, defining the behavior of the thread when

it starts.

• Inside the run() method:

• It prints “Thread is running...” to indicate that the thread has started its execution.

• It enters a loop to simulate some work by printing the thread ID along with a sequence number (Value) from
0 to 4.

• After printing each value, the thread calls Thread.sleep(500) to pause its execution for 500 milliseconds
(0.5 seconds).

• The sleep() method may throw an InterruptedException, so it’s enclosed within a try-catch block to handle
this exception gracefully.

3 main() Method:
• This method serves as the entry point of the program.

• Inside main():

• An instance of the SleepExample class named sleepThread is created.

• The start() method is invoked on sleepThread to begin the execution of the thread.

4 Output:
• When the program is executed:

• The thread starts its execution and prints “Thread is running...”.

• Then, in a loop, it prints the thread ID along with values from 0 to 4, with a 500-millisecond delay between
each value.

• After printing all values, the thread completes its execution.

5 Exception Handling:
• The sleep() method can throw an InterruptedException if the thread is interrupted while sleeping.

• In the catch block, the program prints “Thread interrupted” to indicate that the thread’s sleep was interrupted.

• Depending on the application’s requirements, the exception can be handled or propagated further for
handling at another level.

This program demonstrates how to use the sleep() method to introduce delays in the execution of threads, which
is useful for scenarios where you need to control timing or simulate processing delays.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 104

© NIMI

NOT TO BE REPUBLISHED

148

COMPUTER SOFTWARE APPLICATION - CITS

2 join() Method:
• Purpose: Waits for the thread on which it’s called to die.
• Syntax:join()
• Use Case:
• Ensures that the current thread waits for the completion of the thread on which join() is called before proceeding.
 class JoinExample extends Thread {
 public void run() {
 System.out.println(“Thread is running...”);
 }
 public static void main(String args[]) throws InterruptedException {
 JoinExample joinThread = new JoinExample();
 joinThread.start();
 joinThread.join();
 System.out.println(“Thread has finished”);
 }
}
Explanation:
1 JoinExample Class:

• This class extends the Thread class, indicating that instances of this class can be executed as separate
threads.

2 run() Method:
• The run() method overrides the run() method of the Thread class, defining the behavior of the thread when

it starts.
• Inside the run() method, it prints “Thread is running...” to indicate that the thread has started its execution.

3 main() Method:
• This method serves as the entry point of the program.
• Inside main():
• An instance of the JoinExample class named joinThread is created.
• The start() method is invoked on joinThread to begin the execution of the thread.
• The join() method is called on joinThread. This causes the main thread to wait until joinThread finishes its

execution before continuing further.
• After joinThread finishes executing, “Thread has finished” is printed to indicate that the join operation has

completed.
4 Output:

• When the program is executed:
• The thread starts its execution and prints “Thread is running...”.
• Meanwhile, the main thread waits for joinThread to finish its execution using the join() method.
• Once joinThread finishes executing, “Thread has finished” is printed by the main thread.

5 Exception Handling:
• The join() method can throw an InterruptedException if the thread is interrupted while waiting for another

thread to finish.
• In this example, the main() method declares that it throws InterruptedException. However, no explicit handling

of the exception is performed within the method.

CITS : IT & ITES - Computer Software Application - Exercise 104

© NIMI

NOT TO BE REPUBLISHED

149

COMPUTER SOFTWARE APPLICATION - CITS

Output:

 3 isAlive() Method:
• Purpose: Tests if a thread is alive.
• Syntax:isAlive()
• Return Type:boolean
• Use Case:
• Allows you to check if a thread has been started and has not yet completed its execution.

• Useful when you want to perform actions in the main thread after ensuring that another thread has finished.

class IsAliveExample extends Thread {

 public void run() {

 System.out.println(“Thread is running...”);

 }

 public static void main(String args[]) throws InterruptedException {

 IsAliveExample isAliveThread = new IsAliveExample();

 isAliveThread.start();

 System.out.println(“Is thread alive? “ + isAliveThread.isAlive());

 }

}

Explanation:
1 IsAliveExample Class:
• This class extends the Thread class, indicating that instances of this class can be executed as separate

threads.

2 run() Method:
• The run() method overrides the run() method of the Thread class, defining the behavior of the thread when it

starts.

• Inside the run() method, it prints “Thread is running...” to indicate that the thread has started its execution.

3. main() Method:
• This method serves as the entry point of the program.

• Inside main():

• An instance of the IsAliveExample class named isAliveThread is created.

• The start() method is invoked on isAliveThread to begin the execution of the thread.

• Immediately after starting the thread, isAlive() method is called on isAliveThread to check if the thread is alive.

• The result of isAlive() method (which returns true if the thread is alive and false otherwise) is printed.

CITS : IT & ITES - Computer Software Application - Exercise 104CITS : IT & ITES - Computer Software Application - Exercise 104

© NIMI

NOT TO BE REPUBLISHED

150

COMPUTER SOFTWARE APPLICATION - CITS

4. Output:
• When the program is executed:

• The thread starts its execution and prints “Thread is running...”.

• Meanwhile, in the main thread, isAlive() method is called on isAliveThread to check if the thread is alive.
Since the thread is just started, it is alive.

• Therefore, “Is thread alive? true” is printed by the main thread.

5. Exception Handling:
• No explicit exception handling is performed in this program.

This program demonstrates how to use the isAlive() method to determine if a thread is currently alive or
has completed its execution. It’s often used in scenarios where you need to check the status of threads in a
multithreaded application.

Output:

4 setName(String name) Method:
• Purpose: Changes the name of the thread.

• Syntax:setName(String name)

• Parameters:

• name: The new name to be assigned to the thread.

• Use Case:

• Provides a way to give a meaningful and recognizable name to threads for better identification.

• Useful for debugging and logging purposes.

class SetNameExample extends Thread {

 public void run() {

 System.out.println(“Thread is running...”);

 }

 public static void main(String args[]) {

 SetNameExample setNameThread = new SetNameExample();

 setNameThread.setName(“CustomThreadName”);

 setNameThread.start();

 System.out.println(“Thread Name: “ + setNameThread.getName());

 }

}

CITS : IT & ITES - Computer Software Application - Exercise 104

© NIMI

NOT TO BE REPUBLISHED

151

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:
1 SetNameExample Class:

• This class extends the Thread class, indicating that instances of this class can be executed as separate
threads.

2 run() Method:
• The run() method overrides the run() method of the Thread class, defining the behavior of the thread when

it starts.

• Inside the run() method, it prints “Thread is running...” to indicate that the thread has started its execution.

3 main() Method:
• This method serves as the entry point of the program.

• Inside main():

• An instance of the SetNameExample class named setNameThread is created.

• The setName() method is invoked on setNameThread to set the name of the thread to “CustomThreadName”.

• The start() method is invoked on setNameThread to begin the execution of the thread.

• Immediately after starting the thread, getName() method is called on setNameThread to retrieve the name
of the thread.

• The name of the thread is then printed.

4 Output:
• When the program is executed:

• The thread starts its execution and prints “Thread is running...”.

• Meanwhile, in the main thread, the name of the thread (CustomThreadName) is retrieved using the
getName() method and printed.

 • No explicit exception handling is performed in this program.

This program demonstrates how to set and get the name of a thread in Java using the setName() and getName()
methods. Naming threads can be helpful for identification and debugging purposes in multithreaded applications.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 104CITS : IT & ITES - Computer Software Application - Exercise 104

© NIMI

NOT TO BE REPUBLISHED

152

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 105 : Test multithreading with and without
 synchronization

At the end of this exercise you shall be able to
• know the multithreading with and without synchronization
• develop Java programs using multithreading with and without synchronization.

Tools/Materials
• PC / laptop with windows OS
• SDK software
• Test editor (Visual studio/ subline/ notepad)

Requirements

Procedure
//multithreading with and without synchronization

class CounterWithSync {

 private int count = 0;

 public synchronized void increment() {

 for (int i = 0; i < 5; i++) {

 int currentValue = count;

 System.out.println(Thread.currentThread().getName() + “ - Before Increment: “ + currentValue);

 count = currentValue + 1;

 System.out.println(Thread.currentThread().getName() + “ - After Increment: “ + count);

 }

 }

}

class IncrementThreadWithSync extends Thread {

 private CounterWithSync counter;

 public IncrementThreadWithSync(CounterWithSync counter) {

 this.counter = counter;

 }

 public void run() {

 counter.increment();

 }

}

public class MultithreadingWithSyncExample {

public static void main(String[] args) {

© NIMI

NOT TO BE REPUBLISHED

153

COMPUTER SOFTWARE APPLICATION - CITS

 CounterWithSync counter = new CounterWithSync();

 IncrementThreadWithSync thread1 = new IncrementThreadWithSync(counter);

 IncrementThreadWithSync thread2 = new IncrementThreadWithSync(counter);

 thread1.start();

 thread2.start();

 }

}

Explanation:
1 CounterWithSync Class:

• This class represents a counter with a private count variable.

• The increment() method is synchronized, which means only one thread can execute this method at a time.

• Inside the increment() method, a loop iterates five times, each time incrementing the count by one.

2 IncrementThreadWithSync Class:
• This class extends the Thread class and represents a thread that increments the counter.

• It has a reference to the CounterWithSync object.

3 MultithreadingWithSyncExample Class:
• This class contains the main() method, which serves as the entry point of the program.

• Inside main():

• An instance of CounterWithSync named counter is created.

• Two instances of IncrementThreadWithSync, thread1 and thread2, are created with a reference to the
counter object.

• Both threads are started concurrently using the start() method.

4 Output:
• Since the increment() method is synchronized, only one thread can execute it at a time.

• Thus, the output will show the interleaved execution of the two threads incrementing the counter.

• Each thread displays the count before and after incrementing it, ensuring that the counter is incremented
in a thread-safe manner.

5 Thread Safety:
• Synchronization ensures that only one thread can execute the critical section of code (in this case, the

increment() method) at a time.

• This prevents race conditions and ensures that the shared resource (count variable) is accessed in a
thread-safe manner.

This program demonstrates how to use synchronization in Java to ensure thread safety when multiple threads
access shared resources concurrently. It’s essential for preventing data corruption and maintaining the integrity
of shared data in multithreaded environments.

CITS : IT & ITES - Computer Software Application - Exercise 105

© NIMI

NOT TO BE REPUBLISHED

154

COMPUTER SOFTWARE APPLICATION - CITS

 Output:

CITS : IT & ITES - Computer Software Application - Exercise 105

© NIMI

NOT TO BE REPUBLISHED

155

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 106 : Handle common exceptions

At the end of this exercise you shall be able to
• develop Java programs using various exceptions.

Tools/Materials
• PC / laptop with windows OS
• SDK software
• Test editor (Visual studio/ subline/ notepad)

Requirements

Procedure
1 NullPointerException:

• Description: Occurs when attempting to access members (methods or fields) of an object that is null.

• Handling Approach: Check if the object is null before accessing its members.

public class NullPointerExceptionExample {

 public static void main(String[] args) {

 try {

 // Step 1: Declare a String variable and initialize it to null

 String str = null;

 // Step 2: Attempt to access the length() method on a null reference

 int length = str.length(); // This will throw a NullPointerException

 // Step 3: Display the length of the string (this won’t be reached due to the exception)

 System.out.println(“Length of the string: “ + length);

 } catch (NullPointerException e) {

 // Step 4: Catch the NullPointerException and handle it

 System.out.println(“Caught NullPointerException: “ + e.getMessage());

 }

 }

}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 105

© NIMI

NOT TO BE REPUBLISHED

156

COMPUTER SOFTWARE APPLICATION - CITS

2 ArrayIndexOutOfBoundsException:
• Description: Occurs when attempting to access an array element with an index outside the array’s bounds.

• Handling Approach: Ensure the index is within the array’s bounds.

public class ArrayIndexOutOfBoundsExceptionExample {

 public static void main(String[] args) {

 try {

 int[] arr = {1, 2, 3};

 int element = arr[5]; // This will throw an ArrayIndexOutOfBoundsException

 System.out.println(“Element at index 5: “ + element);

 } catch (ArrayIndexOutOfBoundsException e) {

 System.out.println(“Caught ArrayIndexOutOfBoundsException: “ + e.getMessage());

 }

 }

}

Output:

3 ArithmeticException:
• Description: Occurs when an arithmetic operation results in an undefined mathematical result (e.g., division

by zero).

• Handling Approach: Check for conditions that might lead to undefined results.

public class ArithmeticExceptionExample {

 public static void main(String[] args) {

 try {

 int result = 10 / 0; // This will throw an ArithmeticException

 System.out.println(“Result of division: “ + result);

 } catch (ArithmeticException e) {

 System.out.println(“Caught ArithmeticException: “ + e.getMessage());

 }

 }

}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 106

© NIMI

NOT TO BE REPUBLISHED

157

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 107 : Use multiple try – catch blocks

At the end of this exercise you shall be able to
• develop Java programs using multiple try – catch blocks.

Tools/Materials
• PC / laptop with windows OS
• SDK software
• Test editor (Visual studio/ subline/ notepad)

Requirements

Procedure
// programs using multiple try – catch blocks
public class MultipleTryCatchExample {
 public static void main(String[] args) {
 try {
 // First try block
 int[] numbers = {1, 2, 3};
 System.out.println(“Element at index 5: “ + numbers[5]); // This will throw ArrayIndexOutOfBoundsException
 } catch (ArrayIndexOutOfBoundsException e) {
 System.out.println(“Caught ArrayIndexOutOfBoundsException: “ + e.getMessage());
 }

 try {
 // Second try block
 String str = null;
 System.out.println(“Length of the string: “ + str.length()); // This will throw NullPointerException
 } catch (NullPointerException e) {
 System.out.println(“Caught NullPointerException: “ + e.getMessage());
 }

 try {
 // Third try block
 int result = 10 / 0; // This will throw ArithmeticException
 System.out.println(“Result of division: “ + result);
 } catch (ArithmeticException e) {
 System.out.println(“Caught ArithmeticException: “ + e.getMessage());
 }
 }
}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 106

© NIMI

NOT TO BE REPUBLISHED

158

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 108 : Use the “throw” and “finally” keywords
 handle user defined exceptions

At the end of this exercise you shall be able to
• develop Java programs using “throw” and “finally” keywords handle user defined exceptions.

Tools/Materials
• PC / laptop with windows OS
• SDK software
• Test editor (Visual studio/ subline/ notepad)

Requirements

Procedure
// Custom exception class

class CustomException extends Exception {

 public CustomException(String message) {

 super(message);

 }

}

public class ThrowFinallyExample {

 public static void main(String[] args) {

 try {

 // Simulating a condition where a custom exception is thrown

 throwCustomException();

 } catch (CustomException e) {

 System.out.println(“Caught CustomException: “ + e.getMessage());

 } finally {

 // Code in the finally block will always be executed

 System.out.println(“Finally block: This will execute whether an exception is thrown or not.”);

 }

 }

 // Method that throws a custom exception

 private static void throwCustomException() throws CustomException {

 // Using the ‘throw’ keyword to throw a custom exception

 throw new CustomException(“This is a custom exception.”);

 }

}

© NIMI

NOT TO BE REPUBLISHED

159

COMPUTER SOFTWARE APPLICATION - CITS

1 Custom Exception Class:

Define a custom exception class CustomException that extends the Exception class.

2 Main Method:

• Declare the main method.

3. Try Block:

• Invoke the method throwCustomException() that throws a custom exception using the throw keyword.

4 Catch Block (CustomException):

• Catch the custom exception and print a message.

5 Finally Block:
• The finally block contains code that will always be executed, whether an exception is thrown or not.

6 Throw Custom Exception Method:

• Define a method throwCustomException() that throws a custom exception.

CITS : IT & ITES - Computer Software Application - Exercise 108

© NIMI

NOT TO BE REPUBLISHED

160

COMPUTER SOFTWARE APPLICATION - CITS

When you run this program, it will output:

Related Exercises:
1 Write a program that prints “Good morning” and “Welcome” continuously on the screen in Java using threads.

2 Add a step method in the welcome thread of question 1 to delay its execution for 200ms.

3 Demonstrate gerPriority() and setPriority() methods in Java threads.

4 How do you get the state of a given thread in Java?

5 How do you get the reference to the current thread in Java?

6 Write a program that performs a file transfer using multiple threads.

7 Write a program that performs a database operation using multiple threads.

8 Write a program that handles the following exceptions:

• FileNotFoundException

• IOException

• NullPointerException

• ArithmeticException

9 Write a program that uses the finally block to ensure that resources are always closed, even if an exception
occurs.

CITS : IT & ITES - Computer Software Application - Exercise 108

© NIMI

NOT TO BE REPUBLISHED

161

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 109 : Create and use virtual methods

At the end of this exercise you shall be able to
• develop Java programs to Create and use virtual methods.

Tools/Materials
• PC / laptop with windows OS
• SDK software
• Test editor (Visual studio/ subline/ notepad)

Requirements

Procedure
In Java, the term “virtual methods” is often associated with polymorphism, specifically dynamic method dispatch,
which is a key feature of object-oriented programming (OOP). In Java, all non-static methods are inherently virtual.

Let’s create a simple Java program that demonstrates the use of virtual methods and provide an explanation:

// Base class

class Shape {

 // Virtual method

 public void draw() {

 System.out.println(“Drawing a generic shape”);

 }

}

// Derived class 1

class Circle extends Shape {

 // Overrides the virtual method

 @Override

 public void draw() {

 System.out.println(“Drawing a circle”);

 }

}

// Derived class 2

class Square extends Shape {

 // Overrides the virtual method

 @Override

 public void draw() {

 System.out.println(“Drawing a square”);

 }

© NIMI

NOT TO BE REPUBLISHED

162

COMPUTER SOFTWARE APPLICATION - CITS

}

// Main class

public class VirtualMethodExample {

 public static void main(String[] args) {

 // Create instances of the base class and derived classes

 Shape genericShape = new Shape();

 Circle myCircle = new Circle();

 Square mySquare = new Square();

 // Demonstrate virtual method calls

 genericShape.draw(); // Calls Shape’s draw method
 myCircle.draw(); // Calls Circle’s overridden draw method
 mySquare.draw(); // Calls Square’s overridden draw method
 // Demonstrate polymorphism
 Shape polymorphicShape;
 polymorphicShape = myCircle; // Circle assigned to Shape reference
 polymorphicShape.draw(); // Calls Circle’s overridden draw method
 polymorphicShape = mySquare; // Square assigned to Shape reference
 polymorphicShape.draw(); // Calls Square’s overridden draw method
 }
}
Explanation:
1 Base Class (Shape):

• Defines a virtual method draw that serves as a generic drawing method.

2 Derived Classes (Circle and Square):
• Extend the Shape class.

• Override the virtual method draw with specific implementations for drawing a circle and a square.

3 Main Class (VirtualMethodExample):
• Creates instances of the base class and derived classes.

• Demonstrates virtual method calls for each instance.

• Illustrates polymorphism by assigning instances of derived classes to a Shape reference and invoking
overridden methods.

In this example, the virtual method draw is overridden in the derived classes (Circle and Square). When an object
is assigned to a reference of the base class (Shape), the appropriate overridden method is called at runtime
based on the actual object type. This showcases the concept of virtual methods and polymorphism in Java.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 109

© NIMI

NOT TO BE REPUBLISHED

163

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 110 : Create abstract classes and methods

At the end of this exercise you shall be able to
• develop Java programs to Create abstract classes and methods.

Tools/Materials
• PC / laptop with windows OS
• SDK software
• Test editor (Visual studio/ subline/ notepad)

Requirements

Procedure
TASK 1: Create abstract classes and methods example

// Abstract class

abstract class Shape {

 // Abstract method

 public abstract double calculateArea();

 // Concrete method

 public void displayArea() {

 System.out.println(“Area: “ + calculateArea());

 }

}

// Concrete class 1

class Circle extends Shape {

 private double radius;

 // Constructor

 public Circle(double radius) {

 this.radius = radius;

 }

 // Implementation of abstract method

 @Override

 public double calculateArea() {

 return Math.PI * radius * radius;

 }

}

// Concrete class 2

© NIMI

NOT TO BE REPUBLISHED

164

COMPUTER SOFTWARE APPLICATION - CITS

class Rectangle extends Shape {

 private double length;

 private double width;

 // Constructor

 public Rectangle(double length, double width) {

 this.length = length;

 this.width = width;

 }

 // Implementation of abstract method

 @Override

 public double calculateArea() {

 return length * width;

 }

}

// Main class

public class AbstractClassExample {

 public static void main(String[] args) {

 // Create instances of concrete classes

 Circle circle = new Circle(5.0);

 Rectangle rectangle = new Rectangle(4.0, 6.0);

 // Call abstract and concrete methods

 circle.displayArea(); // Calls abstract method implementation in Circle

 rectangle.displayArea(); // Calls abstract method implementation in Rectangle

 }

}

Explanation:
1 Abstract Class (Shape):

• Declares an abstract method calculateArea() without implementation.

• Defines a concrete method displayArea() that calls the abstract method.

2 Concrete Classes (Circle and Rectangle):
• Extend the abstract class Shape.

• Provide implementations for the abstract method calculateArea().

3 Main Class (AbstractClassExample):
• Creates instances of concrete classes.

• Demonstrates calling abstract and concrete methods.

CITS : IT & ITES - Computer Software Application - Exercise 110

© NIMI

NOT TO BE REPUBLISHED

165

COMPUTER SOFTWARE APPLICATION - CITS

4 Output:

In this example, Shape is an abstract class with an abstract method calculateArea(). Concrete classes
(Circle and Rectangle) extend Shape and provide their implementations for the calculateArea() method. The
AbstractClassExample class demonstrates creating instances of concrete classes and calling both abstract and
concrete methods

TASK 2: Abstract Class with Multiple Abstract Methods
// Abstract class

abstract class Animal {

 // Abstract methods

 public abstract void makeSound();

 public abstract void eat();

 // Concrete method

 public void sleep() {

 System.out.println(“Zzz... (Animal is sleeping)”);

 }

}

// Concrete class 1

class Dog extends Animal {

 // Implementing abstract methods

 @Override

 public void makeSound() {

 System.out.println(“Woof! Woof!”);

 }

 @Override

 public void eat() {

 System.out.println(“Dog is eating”);

 }

}

CITS : IT & ITES - Computer Software Application - Exercise 110CITS : IT & ITES - Computer Software Application - Exercise 110

© NIMI

NOT TO BE REPUBLISHED

166

COMPUTER SOFTWARE APPLICATION - CITS

// Concrete class 2

class Cat extends Animal {

 // Implementing abstract methods

 @Override

 public void makeSound() {

 System.out.println(“Meow!”);

 }

 @Override

 public void eat() {

 System.out.println(“Cat is eating”);

 }

}

// Main class

public class AnimalExample {

 public static void main(String[] args) {

 // Create instances of concrete classes

 Dog myDog = new Dog();

 Cat myCat = new Cat();

 // Call abstract and concrete methods

 myDog.makeSound();

 myDog.eat();

 myDog.sleep();

 myCat.makeSound();

 myCat.eat();

 myCat.sleep();

 }

}

Explanation:
1. Abstract Class (Animal):

• Declares two abstract methods makeSound() and eat().

• Defines a concrete method sleep() with a default implementation.

2. Concrete Classes (Dog and Cat):

• Extend the abstract class Animal.

• Provide implementations for the abstract methods makeSound() and eat().

CITS : IT & ITES - Computer Software Application - Exercise 110

© NIMI

NOT TO BE REPUBLISHED

167

COMPUTER SOFTWARE APPLICATION - CITS

3. Main Class (AnimalExample):
• Creates instances of concrete classes (Dog and Cat).

• Calls both abstract and concrete methods.

4. Output:

In this example, Animal is an abstract class representing common characteristics of animals. It declares two
abstract methods (makeSound() and eat()) that must be implemented by its concrete subclasses. The sleep()
method is a concrete method with a default implementation.

• Concrete Class Dog:
• Implements the makeSound() and eat() methods specific to a dog.

• Inherits the sleep() method from the Animal class.

• Concrete Class Cat:
• Implements the makeSound() and eat() methods specific to a cat.

• Inherits the sleep() method from the Animal class.

• Main Class (AnimalExample):
• Creates instances of Dog and Cat.

• Demonstrates calling methods: makeSound(), eat(), and sleep().

This example showcases the concept of abstraction where the common behavior is defined in the abstract
class (Animal), and specific details are implemented in the concrete subclasses (Dog and Cat). The main class
demonstrates polymorphism, as instances of different subclasses can be treated as instances of the common
abstract class (Animal).

CITS : IT & ITES - Computer Software Application - Exercise 110CITS : IT & ITES - Computer Software Application - Exercise 110

© NIMI

NOT TO BE REPUBLISHED

168

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 111 : Create interfaces in JAVA

At the end of this exercise you shall be able to
• develop Java programs to Create interface in Java.

Tools/Materials
• PC / laptop with windows OS
• SDK software
• Test editor (Visual studio/ subline/ notepad)

Requirements

Procedure
TASK 1: Here’s a basic example of using an interface in Java:

// Define an interface named Printable

interface Printable {

 void print(); // Abstract method without implementation

}

// Implement the Printable interface in a class

class Printer implements Printable {

 // Provide implementation for the print method

 @Override

 public void print() {

 System.out.println(“Printing a document...”);

 }

}

// Main class to demonstrate the interface usage

public class InterfaceBasicExample {

 public static void main(String[] args) {

 // Create an instance of the Printer class

 Printer myPrinter = new Printer();

 // Call the print method through the Printable interface

 myPrinter.print();

 }

}

© NIMI

NOT TO BE REPUBLISHED

169

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:
1 Interface (Printable):

• Declares a single abstract method named print().

2. Class Implementing the Interface (Printer):

• Implements the Printable interface.

• Provides a concrete implementation for the print method.

3. Main Class (InterfaceBasicExample):

• Creates an instance of the Printer class.

• Calls the print method through the Printable interface.

This basic example demonstrates how an interface defines a contract (in this case, the print method), and a class
implementing the interface must provide a concrete implementation for that method. The main class then utilizes
the interface to call the implemented method. The use of interfaces allows for a level of abstraction and helps
achieve better code organization and maintainability.

Output:

TASK 2 : In Java, an interface is a collection of abstract methods. It provides a way to achieve
 abstraction and multiple inheritance. Here is an example of creating interfaces in Java

// Example 1: Basic Interface

interface Printable {

 void print(); // Abstract method (no method body)

}

// Example 2: Interface with Constant

interface Shape {

 double PI = 3.14; // Constant (implicitly public, static, and final)

 double calculateArea(); // Abstract method

}

// Example 3: Interface with Default Method

interface Greeting {

 void greet(); // Abstract method

 default void farewell() {

 System.out.println(“Goodbye!”); // Default method with implementation

CITS : IT & ITES - Computer Software Application - Exercise 111

© NIMI

NOT TO BE REPUBLISHED

170

COMPUTER SOFTWARE APPLICATION - CITS

 }

}

// Example 4: Interface with Static Method

interface Utility {

 static void showInfo() {

 System.out.println(“This is a utility interface.”); // Static method with implementation

 }

 void performTask(); // Abstract method

}

// Example 5: Interface Inheritance

interface Flyable {

 void fly();

}

interface Swimmable {

 void swim();

}

// Combined interface inheriting from Flyable and Swimmable

interface FlyingSwimmingCreature extends Flyable, Swimmable {

 // No additional methods needed

}

// Main class

public class InterfaceExample implements Printable, Shape, Greeting, Utility, FlyingSwimmingCreature {

 // Implementation of Printable interface method

 @Override

 public void print() {

 System.out.println(“Printing...”);

 }

 // Implementation of Shape interface method

 @Override

 public double calculateArea() {

 return PI * 2 * 2; // Area of a circle with radius 2

 }

 // Implementation of Greeting interface method

 @Override

 public void greet() {

 System.out.println(“Hello!”);

 }

 // Implementation of Utility interface method

 @Override

CITS : IT & ITES - Computer Software Application - Exercise 111

© NIMI

NOT TO BE REPUBLISHED

171

COMPUTER SOFTWARE APPLICATION - CITS

 public void performTask() {

 System.out.println(“Performing a task...”);

 }

 // Implementation of Flyable interface method

 @Override

 public void fly() {

 System.out.println(“Flying...”);

 }

 // Implementation of Swimmable interface method

 @Override

 public void swim() {

 System.out.println(“Swimming...”);

 }

 // Main method

 public static void main(String[] args) {

 InterfaceExample example = new InterfaceExample();

 // Calling methods from implemented interfaces

 example.print();

 System.out.println(“Area: “ + example.calculateArea());

 example.greet();

 example.farewell(); // Calling default method

 example.performTask();

 example.fly();

 example.swim();

 }

}

Explanation:
1 Basic Interface (Printable):

• Declares a single abstract method print().

2 Interface with Constant (Shape):

• Declares a constant PI and an abstract method calculateArea().

3 Interface with Default Method (Greeting):

• Declares an abstract method greet() and a default method farewell() with an implementation.

4 Interface with Static Method (Utility):

• Declares an abstract method performTask() and a static method showInfo() with an implementation.

5 Interface Inheritance (Flyable and Swimmable):

• Two interfaces with different methods.

• A third interface (FlyingSwimmingCreature) inherits from both Flyable and Swimmable.

6. Main Class (InterfaceExample):

CITS : IT & ITES - Computer Software Application - Exercise 111CITS : IT & ITES - Computer Software Application - Exercise 111

© NIMI

NOT TO BE REPUBLISHED

172

COMPUTER SOFTWARE APPLICATION - CITS

• Implements multiple interfaces (Printable, Shape, Greeting, Utility, FlyingSwimmingCreature).

• Provides implementations for all abstract methods from the interfaces.

• Demonstrates calling methods from the implemented interfaces.

This example illustrates the use of interfaces with abstract methods, constants, default methods, static methods,
and interface inheritance in Java. Instances of the InterfaceExample class can be treated as instances of each
implemented interface.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 111

© NIMI

NOT TO BE REPUBLISHED

173

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 112 : Override methods in JAVA

At the end of this exercise you shall be able to
• develop Java programs to Override methods in JAVA.

Tools/Materials
• PC / laptop with windows OS
• SDK software
• Test editor (Visual studio/ subline/ notepad)

Requirements

Procedure
In Java, method overriding is a mechanism by which a subclass provides a specific implementation of a method
that is already provided by its superclass. The overridden method in the subclass should have the same signature
(name, return type, and parameters) as the method in the superclass.

TASK 1: Here’s a basic example of method overriding in Java:
// Base class (Superclass)

class Animal {

 // Method to make a sound

 public void makeSound() {

 System.out.println(“Some generic animal sound”);

 }

}

// Derived class (Subclass) extending Animal

class Cat extends Animal {

 // Override the makeSound method from the Animal class

 @Override

 public void makeSound() {

 System.out.println(“Meow!”);

 }

 // Additional method specific to Cat

 public void purr() {

 System.out.println(“Purring...”);

 }

}

// Main class to demonstrate method overriding

public class MethodOverrideExample {

 public static void main(String[] args) {

CITS : IT & ITES - Computer Software Application - Exercise 111

© NIMI

NOT TO BE REPUBLISHED

174

COMPUTER SOFTWARE APPLICATION - CITS

 // Create an instance of the Cat class

 Cat myCat = new Cat();

 // Call the overridden method

 myCat.makeSound(); // Outputs: Meow!

 // Call the additional method specific to Cat

 myCat.purr(); // Outputs: Purring

 }

}

Explanation:
1. Base Class (Animal):

• Contains a method named makeSound.

2. Derived Class (Cat):

• Extends the Animal class.

• Overrides the makeSound method to provide a specific implementation for the Cat class.

• Adds an additional method purr specific to the Cat class.

3. Main Class (MethodOverrideExample):

• Creates an instance of the Cat class.

• Calls the overridden method makeSound, which outputs the specific sound for a cat.

• Calls the additional method purr, which is specific to the Cat class.

In this example, the makeSound method is overridden in the Cat class to provide a more specific implementation
for a cat’s sound. Method overriding is a key feature in achieving polymorphism in object-oriented programming.
Instances of the subclass can be treated as instances of the superclass, allowing for flexibility and extensibility in
code.

Output:

 TASK 2 : Here’s a basic example of method overriding in Java
// Base class (Superclass)

class Vehicle {

 // Method to display information about the vehicle

 public void displayInfo() {

CITS : IT & ITES - Computer Software Application - Exercise 112

© NIMI

NOT TO BE REPUBLISHED

175

COMPUTER SOFTWARE APPLICATION - CITS

 System.out.println(“This is a generic vehicle.”);

 }

}

// Derived class (Subclass) extending Vehicle

class Car extends Vehicle {

 // Override the displayInfo method from the Vehicle class

 @Override

 public void displayInfo() {

 System.out.println(“This is a car.”);

 }

 // Additional method specific to Car

 public void startEngine() {

 System.out.println(“Car engine started.”);

 }

}

// Main class to demonstrate method overriding

public class MethodOverrideBasicExample {

 public static void main(String[] args) {

 // Create an instance of the Car class

 Car myCar = new Car();

 // Call the overridden method

 myCar.displayInfo(); // Outputs: This is a car.

 // Call the additional method specific to Car

 myCar.startEngine(); // Outputs: Car engine started.

 }

}

Explanation:
1 Base Class (Vehicle):

• Contains a method named displayInfo to display generic information about the vehicle.

2 Derived Class (Car):

• Extends the Vehicle class.

• Overrides the displayInfo method to provide a specific implementation for a car.

• Adds an additional method startEngine specific to the Car class.

CITS : IT & ITES - Computer Software Application - Exercise 112CITS : IT & ITES - Computer Software Application - Exercise 112

© NIMI

NOT TO BE REPUBLISHED

176

COMPUTER SOFTWARE APPLICATION - CITS

3 Main Class (MethodOverrideBasicExample):

• Creates an instance of the Car class.

• Calls the overridden method displayInfo, which outputs specific information for a car.

• Calls the additional method startEngine, which is specific to the Car class.

In this basic example, the displayInfo method is overridden in the Car class to provide specific information
for a car. Method overriding allows the subclass to provide its own implementation of a method defined in the
superclass. Instances of the subclass can be treated as instances of the superclass, providing flexibility in coding
and enhancing code reusability.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 112

© NIMI

NOT TO BE REPUBLISHED

177

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 113 : Create and implement an interface

At the end of this exercise you shall be able to
• develop Java programs to Create and implement an interface.

Tools/Materials
• PC / laptop with windows OS
• SDK software
• Test editor (Visual studio/ subline/ notepad)

Requirements

Procedure
TASK 1: Interface and Implementation

// Define an interface named Printable

interface Printable {

 void print(); // Abstract method without implementation

}

// Implement the Printable interface in a class

class Printer implements Printable {

 // Provide implementation for the print method

 @Override

 public void print() {

 System.out.println(“Welcom to Java”);

 }

}

// Main class to demonstrate interface implementation

public class InterfaceImplementationExample {

 public static void main(String[] args) {

 // Create an instance of the Printer class

 Printer myPrinter = new Printer();

 // Call the print method through the Printable interface

 myPrinter.print();

 }

}

CITS : IT & ITES - Computer Software Application - Exercise 112

© NIMI

NOT TO BE REPUBLISHED

178

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:

1. Interface (Printable):

• Declares a single abstract method named print.

2. Class Implementing the Interface (Printer):

• Implements the Printable interface.

• Provides a concrete implementation for the print method.

3. Main Class (InterfaceImplementationExample):

• Creates an instance of the Printer class.

• Calls the print method through the Printable interface.

Output:

In this example, the Printable interface declares an abstract method print. The Printer class implements this
interface and provides a concrete implementation for the print method. The main class demonstrates how to
create an instance of the implementing class and call the method through the interface.

Interfaces in Java are used to achieve abstraction, define a contract, and support multiple inheritances. Classes
can implement multiple interfaces, allowing for more flexibility in the design of Java programs.

TASK 2: Multiple Interfaces
// Interface 1

interface Printable {

 void print();

}

// Interface 2

interface Showable {

 void show();

}

// Class implementing multiple interfaces

class Display implements Printable, Showable {

 @Override

 public void print() {

 System.out.println(“Printing...”);

 }

 @Override

 public void show() {

CITS : IT & ITES - Computer Software Application - Exercise 113

© NIMI

NOT TO BE REPUBLISHED

179

COMPUTER SOFTWARE APPLICATION - CITS

 System.out.println(“Showing...”);

 }

}

// Main class

public class MultipleInterfacesExample {

 public static void main(String[] args) {

 Display display = new Display();

 display.print();

 display.show();

 }

}

Explanation:
1. Interface Definitions (Printable and Showable):

• The code defines two interfaces: Printable and Showable.

• Each interface declares a single abstract method (print in Printable and show in Showable).

2. Class Implementation (Display):

• The Display class implements both the Printable and Showable interfaces.

• It provides concrete implementations for the print and show methods.

3. Method Implementations (print and show):

• The print method prints “Printing...” to the console.

• The show method prints “Showing...” to the console.

4. Main Class (MultipleInterfacesExample):

• The main method creates an instance of the Display class named display.

• It demonstrates the use of the print and show methods through the display object.

Output:

In summary, this example illustrates the implementation of multiple interfaces (Printable and Showable) in a class
(Display). The class provides concrete implementations for the methods defined in each interface. The main
method demonstrates the usage of these methods through an instance of the implementing class, showcasing
how a class can incorporate multiple interfaces in Java.

CITS : IT & ITES - Computer Software Application - Exercise 113CITS : IT & ITES - Computer Software Application - Exercise 113

© NIMI

NOT TO BE REPUBLISHED

180

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 114 : Extend interfaces in JAVA

At the end of this exercise you shall be able to
• develop Java programs to extend interface in Java.

Tools/Materials
• PC / laptop with windows OS
• SDK software
• Test editor (Visual studio/ subline/ notepad)

Requirements

Procedure
TASK 1: Extending Interfaces

// Base interface

interface Shape {

 void draw(); // Abstract method

}

// Extended interface inheriting from Shape

interface Colorable extends Shape {

 void color(); // Additional abstract method

}

// Class implementing the extended interface

class Square implements Colorable {

 @Override

 public void draw() {

 System.out.println(“Drawing a square”);

 }

 @Override

 public void color() {

 System.out.println(“Coloring the square”);

 }

}

// Main class

public class InterfaceExtensionExample {

© NIMI

NOT TO BE REPUBLISHED

181

COMPUTER SOFTWARE APPLICATION - CITS

 public static void main(String[] args) {

 Square square = new Square();

 square.draw();

 square.color();

 }

}

Explanation:
1. Base Interface (Shape):

• Defines a base interface named Shape with a single abstract method draw.

2. Extended Interface (Colorable):

• Extends the Shape interface using the extends keyword.

• Introduces an additional abstract method color.

3. Class Implementation (Square):

• Implements the extended interface Colorable.

• Provides concrete implementations for both draw and color methods.

4. Main Class (InterfaceExtensionExample):

• Creates an instance of the Square class.

• Demonstrates the usage of both draw and color methods through the square object.

Output:

This example illustrates how an interface (Colorable) can extend another interface (Shape) to inherit its methods
while adding new methods. The class Square implements the extended interface, providing implementations for
all abstract methods. The main method demonstrates the usage of methods from both the base and extended
interfaces through an instance of the implementing class.

CITS : IT & ITES - Computer Software Application - Exercise 114

© NIMI

NOT TO BE REPUBLISHED

182

COMPUTER SOFTWARE APPLICATION - CITS

TASK 2: Let’s explore another example that extends interfaces in Java:
// Base interface

interface Animal {

 void eat(); // Abstract method

}

// Extended interface inheriting from Animal

interface Mammal extends Animal {

 void giveBirth(); // Additional abstract method

}

// Class implementing the extended interface

class Dog implements Mammal {

 @Override

 public void eat() {

 System.out.println(“Dog is eating”);

 }

 @Override

 public void giveBirth() {

 System.out.println(“Dog gives birth to puppies”);

 }

}

// Main class

public class InterfaceExtensionExample2 {

 public static void main(String[] args) {

 Dog myDog = new Dog();

 myDog.eat();

 myDog.giveBirth();

 }

}

Explanation:
1 Base Interface (Animal):

• Defines a base interface named Animal with a single abstract method eat.

2 Extended Interface (Mammal):
• Extends the Animal interface using the extends keyword.

• Introduces an additional abstract method giveBirth.

CITS : IT & ITES - Computer Software Application - Exercise 114

© NIMI

NOT TO BE REPUBLISHED

183

COMPUTER SOFTWARE APPLICATION - CITS

3 Class Implementation (Dog):
• Implements the extended interface Mammal.

• Provides concrete implementations for both eat and giveBirth methods.

4 Main Class (InterfaceExtensionExample2):
• Creates an instance of the Dog class.

• Demonstrates the usage of both eat and giveBirth methods through the myDog object.

5 Output:

In this example, the Mammal interface extends the Animal interface, and the Dog class implements the Mammal
interface. It showcases how interfaces can be extended to inherit methods from a base interface while introducing
new methods specific to the extended interface. The main method demonstrates the usage of methods from both
the base and extended interfaces through an instance of the implementing class.

CITS : IT & ITES - Computer Software Application - Exercise 114CITS : IT & ITES - Computer Software Application - Exercise 114

© NIMI

NOT TO BE REPUBLISHED

184

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 115 : Create and use a package in JAVA

At the end of this exercise you shall be able to
• develop Java programs to Create and use a package in JAVA.

Tools/Materials
• PC / laptop with windows OS
• SDK software
• Test editor (Visual studio/ subline/ notepad)

Requirements

Procedure
TASK 1: Create and use a package
package p2;

import java.util.Scanner;

public class Sub {

 int d;

 public void diff() {

 Scanner scan = new Scanner(System.in);

 System.out.print(“Enter the first number: “);

 int x = scan.nextInt();

 System.out.print(“Enter the second number: “);

 int y = scan.nextInt();

 d = x - y;

 System.out.println(“Difference = “ + d);

 // Close the Scanner to release resources

 scan.close();

 }

 // Main method for testing

 public static void main(String[] args) {

 Sub sub = new Sub();

 sub.diff();

 }

}

© NIMI

NOT TO BE REPUBLISHED

185

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:
1 Package Declaration (package p2;): Specifies that the Sub class belongs to the p2 package.

2 Import Statement (import java.util.Scanner;): Imports the Scanner class from the java.util package, which
is used for reading user input.

3 Class Definition (public class Sub { ... }): Defines the Sub class.

4 Instance Variable (int d;): Declares an instance variable d to store the difference between two numbers.

5 Method Definition (public void diff() { ... }): Defines a method named diff that calculates and displays the
difference between two numbers.

6 Scanner Initialization (Scanner scan = new Scanner(System.in);): Creates a Scanner object to read input
from the console.

7 User Input and Calculation (int x = scan.nextInt();, int y = scan.nextInt();, d = x - y;): Prompts the user to
enter two numbers, reads the input, and calculates the difference.

8 Output Display (System.out.println(“Difference = “ + d);): Displays the calculated difference.

9 Resource Cleanup (scan.close();): Closes the Scanner object to release system resources.

10 Main Method (public static void main(String[] args) { ... }): The entry point of the program. Creates an instance
of the Sub class and calls the diff method for testing.

Output:

TASK 2: Example: Using a Package (Another Example)
Step 1: Create a Package
Create a folder named myPackage and save two Java files inside it.

Step 2: Create Classes inside the Package
1. MyMath.java

// Inside the ‘myPackage’ folder

package myPackage;

public class MyMath {

 public static int add(int a, int b) {

 return a + b;

 }

This program demonstrates basic input/output operations and the use of the Scanner class to interact with the
user.

CITS : IT & ITES - Computer Software Application - Exercise 115

© NIMI

NOT TO BE REPUBLISHED

186

COMPUTER SOFTWARE APPLICATION - CITS

 public static int subtract(int a, int b) {

 return a - b;

 }

}

2 Calculator.java
// Inside the ‘myPackage’ folder

package myPackage;

import java.util.Scanner;

public class Calculator {

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 System.out.print(“Enter the first number: “);

 int num1 = scanner.nextInt();

 System.out.print(“Enter the second number: “);

 int num2 = scanner.nextInt();

 int sum = MyMath.add(num1, num2);

 int difference = MyMath.subtract(num1, num2);

 System.out.println(“Sum: “ + sum);

 System.out.println(“Difference: “ + difference);

 scanner.close();

 }

}

Explanation:
• The MyMath class provides simple mathematical operations (addition and subtraction).

• The Calculator class takes user input, calls methods from MyMath, and displays the results.

Execution:
• The program prompts the user to enter two numbers, performs addition and subtraction using methods from

MyMath, and displays the results.

• Compile the code:

CITS : IT & ITES - Computer Software Application - Exercise 115

© NIMI

NOT TO BE REPUBLISHED

187

COMPUTER SOFTWARE APPLICATION - CITS

• Run the program:

Output:

CITS : IT & ITES - Computer Software Application - Exercise 115

This example demonstrates how to use multiple classes in a package, keeping related functionality organized.

Related Exersises
1 Create and use virtual methods.

• Question: Create a base class Shape with a virtual method calculateArea(). Create derived classes Circle
and Rectangle implementing this method to calculate the area of a circle and rectangle, respectively.

2 Create abstract classes and methods.

• Question: Define an abstract class Bank with an abstract method calculateInterest(). Create subclasses
SavingsAccount and FixedDeposit to implement this method for calculating interest.

3 Create interfaces in JAVA.

• Question: Define an interface Drawable with a method draw(). Create classes Circle and Square
implementing this interface to provide their own implementations of drawing.

4 Override methods in JAVA.

• Question: Create a base class Animal with a method makeSound(). Create subclasses Dog and Cat that
override this method to make different sounds.

5 Create and implement an interface.

• Question: Define an interface Resizable with a method resize(int percentage). Implement this interface in
a class ResizableRectangle that adjusts its dimensions based on the percentage.

6 Extend interfaces in JAVA.

• Question: Create an interface AdvancedDrawable extending the Drawable interface with a method rotate().
Implement this interface in a class RotatableSquare.

7 Create and use a package in JAVA.

• Question: Create a package named utilities and include a class Calculator with methods for addition,
subtraction, multiplication, and division. Use this package in a Main class to perform basic arithmetic
operations.

CITS : IT & ITES - Computer Software Application - Exercise 115

© NIMI

NOT TO BE REPUBLISHED

188

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 116 : Create a simple container using Frame
 class and extending another Frame class

At the end of this exercise you shall be able to
• develop Java programs to Create a simple container using Frame class and extending another Frame

class

Tools/Materials
• PC/Laptop with Windows OS
• JDK Software
• Text Editor (Visual Studio/Sublime/Notepad)

Requirements

Procedure
TASK 1: Simple Frame : a simple graphical window (frame) with a label

import java.awt.Frame;

import java.awt.Label;

public class SimpleContainer extends Frame {

 public SimpleContainer(String title) {

 // Call the constructor of the superclass (Frame) with the specified title

 super(title);

 // Create a label to add to the frame

 Label label = new Label(“Hello, I’m a simple container!”);

 // Add the label to the frame

 add(label);

 // Set the size of the frame

 setSize(300, 200);

 // Make the frame visible

 setVisible(true);

 }

© NIMI

NOT TO BE REPUBLISHED

189

COMPUTER SOFTWARE APPLICATION - CITS

public static void main(String[] args) {

// Create an instance of SimpleContainer, passing the desired title

 SimpleContainer simpleContainer = new SimpleContainer(“Simple Container Example”);

 }

}

1 Import necessary classes:

These lines import the Frame and Label classes from the java.awt package, which are used for creating graphical
user interface components.

2	 Define	the	class	SimpleContainer:

This line declares a class named SimpleContainer that extends the Frame class. This means that SimpleContainer
is a subclass of Frame and inherits its properties and methods.

3 Constructor of SimpleContainer class:

This line begins the constructor of the SimpleContainer class. The constructor is a special method that is called
when an instance of the class is created. It takes a String parameter title to set the title of the frame.

4 Call the superclass constructor:

This line calls the constructor of the superclass (Frame) with the provided title. It sets the title of the frame.

5 Create a label:

This line creates a new Label component with the specified text.

6 Add the label to the frame:

This line adds the created label to the frame. It places the label inside the frame.

7 Set the size of the frame:

 This line sets the size of the frame to 300 pixels in width and 200 pixels in height.

CITS : IT & ITES - Computer Software Application - Exercise 116

© NIMI

NOT TO BE REPUBLISHED

190

COMPUTER SOFTWARE APPLICATION - CITS

8 Make the frame visible:

This line makes the frame visible. Without this, the frame would be created but not displayed on the screen.

9 Close the constructor:

This line closes the constructor of the SimpleContainer class.

10 Main method:

This line starts the main method, which serves as the entry point of the program.

11 Create an instance of SimpleContainer:
This line creates an instance of the SimpleContainer class, passing the string “Simple Container Example” as the
title.

12 Close the main method and the class:

These lines close the main method and the SimpleContainer class.

This program creates a simple graphical window (frame) with a label saying “Hello, I’m a simple container!” and
displays it on the screen when executed.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 116

© NIMI

NOT TO BE REPUBLISHED

191

COMPUTER SOFTWARE APPLICATION - CITS

TASK 2: A simple graphical window (frame) with a label and Window Event Handling
import java.awt.Frame;

import java.awt.Label;

// CustomFrame class extending Frame

class CustomFrame extends Frame {

 public CustomFrame(String title) {

 super(title);

 }

}

// Main class demonstrating the usage

public class ContainerExample {

 public static void main(String[] args) {

 // Creating an instance of CustomFrame

 CustomFrame customFrame = new CustomFrame(“Custom Container Example”);

 // Adding a label to the custom frame

 Label label = new Label(“Hello, this is a simple container!”);

 customFrame.add(label);

 // Setting size and visibility

 customFrame.setSize(300, 200);

 customFrame.setVisible(true);

 // Adding window close event handling

 customFrame.addWindowListener(new java.awt.event.WindowAdapter() {

 public void windowClosing(java.awt.event.WindowEvent windowEvent) {

 System.exit(0);

 }

 });

}}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 116

© NIMI

NOT TO BE REPUBLISHED

192

COMPUTER SOFTWARE APPLICATION - CITS

In this example, we create a custom class CustomFrame that extends the Frame class. We then create an
instance of this custom class, add a Label component to it, and set the size and visibility. Additionally, a window
close event listener is added to handle the closing of the frame.

TASK 3: Button Example
// importing Java AWT class

import java.awt.*;

// extending Frame class to our class ButtonExample

public class ButtonExample extends Frame {

 // initializing using constructor

 ButtonExample() {

 // creating a button

 Button b = new Button(“Click Me!!”);

 // setting button position on screen

 b.setBounds(30, 100, 80, 30);

 // adding button into frame

 add(b);

 // frame size 300 width and 300 height

 setSize(300, 300);

 // setting the title of Frame

 setTitle(“This is our basic AWT example”);

 // no layout manager

 setLayout(null);

CITS : IT & ITES - Computer Software Application - Exercise 116

© NIMI

NOT TO BE REPUBLISHED

193

COMPUTER SOFTWARE APPLICATION - CITS

 // now frame will be visible, by default it is not visible

 setVisible(true);

 // Adding window close event handling

 addWindowListener(new java.awt.event.WindowAdapter() {

 public void windowClosing(java.awt.event.WindowEvent windowEvent) {

 System.exit(0);

 }

 });

 }

 // main method

 public static void main(String args[]) {

 // creating instance of Frame class

 ButtonExample f = new ButtonExample();

 }

}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 116

© NIMI

NOT TO BE REPUBLISHED

194

COMPUTER SOFTWARE APPLICATION - CITS

TASK 4: Creating a TextField, Label and Button component on the Frame
 import java.awt.*;

class TextExample {

 // initializing using constructor

 TextExample() {

 // creating a Frame

 Frame f = new Frame();

 // creating a Label

 Label l = new Label(“Employee id:”);

 // creating a Button

 Button b = new Button(“Submit”);

 // creating a TextField

 TextField t = new TextField();

 // setting position of above components in the frame

 l.setBounds(20, 80, 80, 30);

 t.setBounds(20, 110, 90, 40);

 b.setBounds(200, 120, 90, 30);

 // adding components into frame

 f.add(b);

 f.add(l);

 f.add(t);

 // frame size 400 width and 300 height

 f.setSize(400, 300);

 // setting the title of frame

 f.setTitle(“Employee info”);

 // no layout

 f.setLayout(null);

 // setting visibility of frame

 f.setVisible(true);

CITS : IT & ITES - Computer Software Application - Exercise 116

© NIMI

NOT TO BE REPUBLISHED

195

COMPUTER SOFTWARE APPLICATION - CITS

 // Adding window close event handling

 f.addWindowListener(new java.awt.event.WindowAdapter() {

 public void windowClosing(java.awt.event.WindowEvent windowEvent) {

 System.exit(0);

 }

 });

 }

 // main method

 public static void main(String args[]) {

 // creating instance of TextExample class

 TextExample awt_obj = new TextExample();

 }

}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 116

TASK 5: creating simple Application Form
import java.awt.*;

public class AwtApp extends Frame {

AwtApp() {

 Label firstName = new Label(“First Name”);

 firstName.setBounds(20, 50, 80, 20);

 Label lastName = new Label(“Last Name”);

 lastName.setBounds(20, 80, 80, 20);

© NIMI

NOT TO BE REPUBLISHED

196

COMPUTER SOFTWARE APPLICATION - CITS

 Label dob = new Label(“Date of Birth”);

 dob.setBounds(20, 110, 80, 20);

 TextField firstNameTF = new TextField();

 firstNameTF.setBounds(120, 50, 100, 20);

 TextField lastNameTF = new TextField();

 lastNameTF.setBounds(120, 80, 100, 20);

 TextField dobTF = new TextField();

 dobTF.setBounds(120, 110, 100, 20);

 // Adding CheckboxGroup for grouping gender checkboxes

 CheckboxGroup genderGroup = new CheckboxGroup();

 Checkbox maleCheckbox = new Checkbox(“Male”, genderGroup, false);

 maleCheckbox.setBounds(20, 140, 80, 20);

 Checkbox femaleCheckbox = new Checkbox(“Female”, genderGroup, false);

 femaleCheckbox.setBounds(120, 140, 80, 20);

 Checkbox otherCheckbox = new Checkbox(“Other”, genderGroup, false);

 otherCheckbox.setBounds(220, 140, 80, 20);

 // Adding a List with heading “Hobbies”

 List hobbiesList = new List();

 hobbiesList.add(“Reading”);

 hobbiesList.add(“Swimming”);

 hobbiesList.add(“Gaming”);

 hobbiesList.setBounds(120, 170, 100, 60);

 Button sbmt = new Button(“Submit”);

 sbmt.setBounds(20, 240, 100, 30);

 Button reset = new Button(“Reset”);

 reset.setBounds(120, 240, 100, 30);

 add(firstName);

 add(lastName);

 add(dob);

 add(firstNameTF);

CITS : IT & ITES - Computer Software Application - Exercise 116

© NIMI

NOT TO BE REPUBLISHED

197

COMPUTER SOFTWARE APPLICATION - CITS

 add(lastNameTF);

 add(dobTF);

 add(maleCheckbox);
 add(femaleCheckbox);
 add(otherCheckbox);
 add(new Label(“Gender”));
 add(hobbiesList);
 add(sbmt);
 add(reset);

 // Adding window close event handling
 addWindowListener(new java.awt.event.WindowAdapter() {
 public void windowClosing(java.awt.event.WindowEvent windowEvent) {
 System.exit(0);
 }
 });

 setSize(300, 300);
 setLayout(null);
 setVisible(true);
 }

 public static void main(String[] args) {
 AwtApp awt = new AwtApp();
 }
}
Output:

CITS : IT & ITES - Computer Software Application - Exercise 116

© NIMI

NOT TO BE REPUBLISHED

198

COMPUTER SOFTWARE APPLICATION - CITS

Objectives
EXERCISE 117 : Create a container with a few controls

At the end of this exercise you shall be able to
• develop Java programs to Create a container with a few controls

Tools/Materials
• PC/Laptop with Windows OS
• JDK Software
• Text Editor (Visual Studio/Sublime/Notepad)

Requirements

Procedure
TASK 1: Create a JCheckBox for Multiple Selection
Code:

import javax.swing.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class CheckBoxControlExample {

 public static void main(String[] args) {

 // Create a JFrame (window) with the title “CheckBox Example”

 JFrame frame = new JFrame(“CheckBox Example”);

 // Create two JCheckBox components with labels “Option 1” and “Option 2”

 JCheckBox checkBox1 = new JCheckBox(“Option 1”);

 JCheckBox checkBox2 = new JCheckBox(“Option 2”);

 // Create a JButton with the label “Submit”

 JButton submitButton = new JButton(“Submit”);

 // Add an ActionListener to the submitButton

 submitButton.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 // Create a StringBuilder to build the message

 StringBuilder selectedOptions = new StringBuilder(“Selected Options: “);

 // Check if checkBox1 is selected and append the corresponding text

 if (checkBox1.isSelected()) {

CITS : IT & ITES - Computer Software Application - Exercise 117

© NIMI

NOT TO BE REPUBLISHED

199

COMPUTER SOFTWARE APPLICATION - CITS

 selectedOptions.append(“Option 1 “);

 }

 // Check if checkBox2 is selected and append the corresponding text

 if (checkBox2.isSelected()) {

 selectedOptions.append(“Option 2 “);

 }

 // Display a JOptionPane with the selected options

 JOptionPane.showMessageDialog(frame, selectedOptions.toString());

 }

 });

 // Set the layout manager for the frame to BoxLayout along the Y-axis

 frame.setLayout(new BoxLayout(frame.getContentPane(), BoxLayout.Y_AXIS));

 // Add the checkboxes and submit button to the frame

 frame.getContentPane().add(checkBox1);

 frame.getContentPane().add(checkBox2);

 frame.getContentPane().add(submitButton);

 // Set the size, default close operation, and make the frame visible

 frame.setSize(300, 200);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setVisible(true);

 }

}

Explanation:
1 Imports: Import necessary classes from the javax.swing and java.awt.event packages for GUI components

and event handling.

2 Class Declaration: Declare a class named CheckBoxControlExample.

3 Main Method: The main method is the entry point for the application.

4 JFrame Initialization: Create a JFrame object named frame with the title “CheckBox Example.”

5 Checkboxes and Button Initialization: Create two JCheckBox components (checkBox1 and checkBox2) and a
JButton (submitButton).

6 ActionListener: Add an ActionListener to the submitButton. Inside the actionPerformed method, check the
selected state of each checkbox and build a message accordingly.

7 Layout Manager: Set the layout manager for the frame to BoxLayout along the Y-axis.

8 Component Addition: Add the checkboxes and the submit button to the frame’s content pane.

9 Frame Configuration: Set the frame’s size, default close operation, and make it visible.

CITS : IT & ITES - Computer Software Application - Exercise 117

© NIMI

NOT TO BE REPUBLISHED

200

COMPUTER SOFTWARE APPLICATION - CITS

When you run this program, a window will appear with two checkboxes and a submit button. Upon clicking the
submit button, a message dialog will show the selected options based on the checkboxes.

Output:

TASK 2: Create a JCheckBox for Multiple Selection
Code:

import javax.swing.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class RadioButtonControlExample {

 public static void main(String[] args) {

 JFrame frame = new JFrame(“RadioButton Example”);

 JRadioButton radioButton1 = new JRadioButton(“Male”);

CITS : IT & ITES - Computer Software Application - Exercise 117 CITS : IT & ITES - Computer Software Application - Exercise 117

© NIMI

NOT TO BE REPUBLISHED

201

COMPUTER SOFTWARE APPLICATION - CITS

 JRadioButton radioButton2 = new JRadioButton(“Female”);

 JButton submitButton = new JButton(“Submit”);

 ButtonGroup group = new ButtonGroup();

 group.add(radioButton1);

 group.add(radioButton2);

 submitButton.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 String selectedOption = radioButton1.isSelected() ? “Male” : “Female”;

 JOptionPane.showMessageDialog(frame, “Selected Option: “ + selectedOption);

 }

 });

 frame.setLayout(new BoxLayout(frame.getContentPane(), BoxLayout.Y_AXIS));

 frame.getContentPane().add(radioButton1);

 frame.getContentPane().add(radioButton2);

 frame.getContentPane().add(submitButton);

 frame.setSize(300, 200);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setVisible(true);

 }

}

Explanation:
1 Import Statements:

import javax.swing.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

Import necessary packages for Swing components and event handling.

2	 Class	Definition:
public class RadioButtonControlExample {

Define a class named RadioButtonControlExample.

3 Main Method:
public static void main(String[] args) {

Start the main method.

CITS : IT & ITES - Computer Software Application - Exercise 117

© NIMI

NOT TO BE REPUBLISHED

202

COMPUTER SOFTWARE APPLICATION - CITS

4 Frame Initialization:
JFrame frame = new JFrame(“RadioButton Example”);

Create a JFrame (window) with the title “RadioButton Example”.

5 RadioButton Creation:
JRadioButton radioButton1 = new JRadioButton(“Male”); JRadioButton radioButton2 = new
JRadioButton(“Female”);

Create two JRadioButton instances with labels “Male” and “Female”.

6 ButtonGroup Setup:
ButtonGroup group = new ButtonGroup();

 group.add(radioButton1);

group.add(radioButton2);

Create a ButtonGroup and add the radio buttons to it. This ensures that only one radio button in the group can
be selected at a time.

7 Submit Button Creation:
JButton submitButton = new JButton(“Submit”);

Create a JButton with the label “Submit”.

8 ActionListener for Submit Button:
submitButton.addActionListener(new ActionListener()

{ @Override public void actionPerformed(ActionEvent e)

 { String selectedOption = radioButton1.isSelected() ? “Male” : “Female”; JOptionPane.showMessageDialog(frame,
“Selected Option: “ + selectedOption); } });

Attach an ActionListener to the submit button. When the button is clicked, it checks which radio button is
selected and displays a message dialog accordingly.

9 Frame Layout and Components Addition:
frame.setLayout(new BoxLayout(frame.getContentPane(), BoxLayout.Y_AXIS)); frame.getContentPane().
add(radioButton1); frame.getContentPane().add(radioButton2); frame.getContentPane().add(submitButton);

Set the layout of the frame to a vertical box layout and add the radio buttons and the submit button to the
content pane of the frame.

10	Frame	Configuration	and	Display:
frame.setSize(300, 200); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); frame.setVisible(true);

Set the size, default close operation, and make the frame visible.

This program creates a simple GUI with two radio buttons and a submit button. Upon clicking the submit
button, a message dialog is shown, indicating the selected gender. The use of ButtonGroup ensures exclusive
selection.

CITS : IT & ITES - Computer Software Application - Exercise 117 CITS : IT & ITES - Computer Software Application - Exercise 117

© NIMI

NOT TO BE REPUBLISHED

203

COMPUTER SOFTWARE APPLICATION - CITS

Output:

CITS : IT & ITES - Computer Software Application - Exercise 117

© NIMI

NOT TO BE REPUBLISHED

204

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 118 : Create a container with controls with action
 listeners and event handlers

At the end of this exercise you shall be able to
• Develop Java programs to Create a container with controls with action listeners and event handlers.

Tools/Materials
• PC/Laptop with Windows OS
• JDK Software
• Text Editor (Visual Studio/Sublime/Notepad)

Requirements

Procedure
TASK 1: Creating a container with controls (CheckBox) using AWT in Java, along with action listeners

and event handlers
import java.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class CheckboxExample {

 public static void main(String[] args) {

 Frame frame = new Frame(“Checkbox Example”);

 Checkbox checkbox = new Checkbox(“Check me”);

 checkbox.addItemListener(e -> {

 System.out.println(“Checkbox state: “ + (checkbox.getState() ? “Checked” : “Unchecked”));

 });

 frame.add(checkbox);

 frame.setSize(300, 150);

 frame.setLayout(new FlowLayout());

 frame.setVisible(true);

frame.addWindowListener(new java.awt.event.WindowAdapter() {

 public void windowClosing(java.awt.event.WindowEvent windowEvent) {

 System.exit(0);

 }

 });

 }

}

CITS : IT & ITES - Computer Software Application - Exercise 118

© NIMI

NOT TO BE REPUBLISHED

205

COMPUTER SOFTWARE APPLICATION - CITS

Output:

TASK 2: Button Selection with Action Listener
import javax.swing.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class ButtonClickExample {

 public static void main(String[] args) {

 JFrame frame = new JFrame(“Button Click Example”);

 JButton button = new JButton(“Click me”);

 button.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 JOptionPane.showMessageDialog(null, “Button clicked!”);

 }

 });

CITS : IT & ITES - Computer Software Application - Exercise 118

© NIMI

NOT TO BE REPUBLISHED

206

COMPUTER SOFTWARE APPLICATION - CITS

 frame.getContentPane().add(button);

 frame.setSize(300, 150);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setVisible(true);

 }

}

Output:

TASK 3: Creating a container with controls (TextField, Button) using AWT in Java, along with action
listeners and event handlers

import java.awt.*;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import javax.swing.JOptionPane;

public class AwtContainerWithListeners {

 public static void main(String[] args) {

 // Creating the main frame

 Frame frame = new Frame(“AWT Container with Listeners”);

 frame.setSize(300, 150);

 // Creating components

 Label nameLabel = new Label(“Name:”);

 TextField nameTextField = new TextField(20);

 Button submitButton = new Button(“Submit”);

CITS : IT & ITES - Computer Software Application - Exercise 118 CITS : IT & ITES - Computer Software Application - Exercise 118

© NIMI

NOT TO BE REPUBLISHED

207

COMPUTER SOFTWARE APPLICATION - CITS

 // Setting layout to FlowLayout

 frame.setLayout(new FlowLayout());

 // Adding components to the frame

 frame.add(nameLabel);

 frame.add(nameTextField);

 frame.add(submitButton);

// Adding action listener to the button

 submitButton.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 String name = nameTextField.getText();

 System.out.println(“Name submitted: “ + name);

 showConfirmationDialog(“Submission”, “Name submitted: “ + name);

 }

 });

 // Adding event handler to the text field

 nameTextField.addActionListener(new ActionListener() {

 @Override

 public void actionPerformed(ActionEvent e) {

 String name = nameTextField.getText();

 System.out.println(“Enter key pressed in the text field. Name: “ + name);

 showConfirmationDialog(“Text Field Event”, “Enter key pressed. Name: “ + name);

 }

 });

 // Setting frame visibility

 frame.setVisible(true);

 // Adding window close event handling

 frame.addWindowListener(new java.awt.event.WindowAdapter() {

 public void windowClosing(java.awt.event.WindowEvent windowEvent) {

 System.exit(0);

 }

 });

 }

CITS : IT & ITES - Computer Software Application - Exercise 118

© NIMI

NOT TO BE REPUBLISHED

208

COMPUTER SOFTWARE APPLICATION - CITS

 private static void showConfirmationDialog(String title, String message) {

 // Display a confirmation dialog

 JOptionPane.showMessageDialog(null, message, title, JOptionPane.INFORMATION_MESSAGE);

 }

}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 118

© NIMI

NOT TO BE REPUBLISHED

209

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 119 : Create	a	GUI	to	draw	different	plane	shapes	
																												over	a	predefined	area

At the end of this exercise you shall be able to
• Develop Java programs to Create a GUI to draw different plane shapes over a predefined area.

Tools/Materials
• PC/Laptop with Windows OS
• JDK Software
• Text Editor (Visual Studio/Sublime/Notepad)

Requirements

Procedure

TASK 1: Example	program	that	allows	the	user	to	draw	different	plane	shapes	(e.g.,	circles,	rectangles)	

on a JPanel using mouse interactions
import javax.swing.*;

import java.awt.*;

import java.awt.event.MouseAdapter;

import java.awt.event.MouseEvent;

import java.util.ArrayList;

class PlaneShapesGUI extends JFrame {

 private ArrayList<Shape> shapes = new ArrayList<>();

 private Shape currentShape;

 private int startX, startY;

 public PlaneShapesGUI() {

 setTitle(“Plane Shapes Drawing”);

 setSize(500, 500);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JPanel drawingPanel = new JPanel() {

 @Override

 protected void paintComponent(Graphics g) {

 super.paintComponent(g);

 drawShapes(g);

 }

 };

© NIMI

NOT TO BE REPUBLISHED

210

COMPUTER SOFTWARE APPLICATION - CITS

 drawingPanel.addMouseListener(new MouseAdapter() {

 @Override

 public void mousePressed(MouseEvent e) {

 startX = e.getX();

 startY = e.getY();

 }

 @Override

 public void mouseReleased(MouseEvent e) {

 int endX = e.getX();

 int endY = e.getY();

 createShape(startX, startY, endX, endY);

 repaint();

 }

 });

 add(drawingPanel);

 }

 private void drawShapes(Graphics g) {

 Graphics2D g2d = (Graphics2D) g;

 g2d.setColor(Color.BLACK);

 for (Shape shape : shapes) {

 g2d.draw(shape);

 }

 }

 private void createShape(int startX, int startY, int endX, int endY) {

 int width = Math.abs(endX - startX);

 int height = Math.abs(endY - startY);

 if (width > 0 && height > 0) {

 currentShape = new Rectangle(startX, startY, width, height);

 shapes.add(currentShape);

 }

 }

CITS : IT & ITES - Computer Software Application - Exercise 119 CITS : IT & ITES - Computer Software Application - Exercise 119

© NIMI

NOT TO BE REPUBLISHED

211

COMPUTER SOFTWARE APPLICATION - CITS

 public static void main(String[] args) {

 SwingUtilities.invokeLater(() -> {

 PlaneShapesGUI gui = new PlaneShapesGUI();

 gui.setVisible(true);

 });

 }

}

Output:

TASK 2: Drawing Circles
import javax.swing.*;

import java.awt.*;

import java.awt.event.MouseAdapter;

import java.awt.event.MouseEvent;

import java.util.ArrayList;

import java.awt.geom.Ellipse2D;

public class CircleDrawingGUI extends JFrame {

 private ArrayList<Shape> circles = new ArrayList<>();

 private Shape currentCircle;

 private int centerX, centerY;

 public CircleDrawingGUI() {

CITS : IT & ITES - Computer Software Application - Exercise 119

© NIMI

NOT TO BE REPUBLISHED

212

COMPUTER SOFTWARE APPLICATION - CITS

 setTitle(“Circle Drawing”);

 setSize(500, 500);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JPanel drawingPanel = new JPanel() {

 @Override

 protected void paintComponent(Graphics g) {

 super.paintComponent(g);

 drawCircles(g);

 }

 };

 drawingPanel.addMouseListener(new MouseAdapter() {

 @Override

 public void mousePressed(MouseEvent e) {

 centerX = e.getX();

 centerY = e.getY();

 }

 @Override

 public void mouseReleased(MouseEvent e) {

 int radius = (int) Math.sqrt(Math.pow(e.getX() - centerX, 2) + Math.pow(e.getY() - centerY, 2));

 createCircle(centerX, centerY, radius);

 repaint();

 }

 });

 add(drawingPanel);

 }

 private void drawCircles(Graphics g) {

 Graphics2D g2d = (Graphics2D) g;

 g2d.setColor(Color.BLUE);

 for (Shape circle : circles) {

 g2d.draw(circle);

 }

 }

 private void createCircle(int centerX, int centerY, int radius) {

CITS : IT & ITES - Computer Software Application - Exercise 119 CITS : IT & ITES - Computer Software Application - Exercise 119

© NIMI

NOT TO BE REPUBLISHED

213

COMPUTER SOFTWARE APPLICATION - CITS

 currentCircle = new Ellipse2D.Double(centerX - radius, centerY - radius, 2 * radius, 2 * radius);

 circles.add(currentCircle);

 }

 public static void main(String[] args) {

 SwingUtilities.invokeLater(() -> {

 CircleDrawingGUI gui = new CircleDrawingGUI();

 gui.setVisible(true);

 });

 }

}

Output:

TASK 3: Drawing Lines
import javax.swing.*;

import java.awt.*;

import java.awt.event.MouseAdapter;

import java.awt.event.MouseEvent;

import java.util.ArrayList;

import java.awt.geom.Line2D;

class LineDrawingGUI extends JFrame {

CITS : IT & ITES - Computer Software Application - Exercise 119

© NIMI

NOT TO BE REPUBLISHED

214

COMPUTER SOFTWARE APPLICATION - CITS

 private ArrayList<Shape> lines = new ArrayList<>();

 private Shape currentLine;

 private int startX, startY;

 public LineDrawingGUI() {

 setTitle(“Line Drawing”);

 setSize(500, 500);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JPanel drawingPanel = new JPanel() {

 @Override

 protected void paintComponent(Graphics g) {

 super.paintComponent(g);

 drawLines(g);

 }

 };

 drawingPanel.addMouseListener(new MouseAdapter() {

 @Override

 public void mousePressed(MouseEvent e) {

 startX = e.getX();

 startY = e.getY();

 }

 @Override

public void mouseReleased(MouseEvent e) {

 createLine(startX, startY, e.getX(), e.getY());

 repaint();

 }

 });

 add(drawingPanel);

 }

 private void drawLines(Graphics g) {

 Graphics2D g2d = (Graphics2D) g;

 g2d.setColor(Color.RED);

CITS : IT & ITES - Computer Software Application - Exercise 119 CITS : IT & ITES - Computer Software Application - Exercise 119

© NIMI

NOT TO BE REPUBLISHED

215

COMPUTER SOFTWARE APPLICATION - CITS

 for (Shape line : lines) {

 g2d.draw(line);

 }

 }

 private void createLine(int startX, int startY, int endX, int endY) {

 currentLine = new Line2D.Double(startX, startY, endX, endY);

 lines.add(currentLine);

 }

 public static void main(String[] args) {

 SwingUtilities.invokeLater(() -> {

 LineDrawingGUI gui = new LineDrawingGUI();

 gui.setVisible(true);

 });

 }

}

Output:

CITS : IT & ITES - Computer Software Application - Exercise 119

© NIMI

NOT TO BE REPUBLISHED

216

COMPUTER SOFTWARE APPLICATION - CITS

Related Exercises
1 Create a Login Form using AWT:
 Design a simple login form with two TextFields (for username and password), a Button (for login), and display

a message using a Label based on the login attempt.

2 Calculator Application using AWT:
 Build a basic calculator application with buttons for digits, arithmetic operations, and a TextField to display the

result.

3 Temperature Converter:
 Create a temperature converter application using AWT. Include TextFields for input and output, Buttons for

conversion between Celsius and Fahrenheit, and a Label to display the result.

4 Student Registration Form:
 Design a student registration form with TextFields for entering student details such as name, roll number,

and a Choice component for selecting the course. Use a Button to submit the form and display the entered
information in a TextArea.

5 Simple Drawing App:
 Develop a simple drawing application using AWT. Include buttons for selecting different shapes (e.g., line,

circle, rectangle) and a Canvas to draw these shapes. Implement event handling to draw the selected shape
when the user clicks on the Canvas.

6 Password Strength Checker:
 Create a password strength checker using AWT. Include a TextField for entering the password, a Button to

check the strength, and a Label to display the result (e.g., Weak, Medium, Strong).

7 Image Viewer:
 Build a basic image viewer using AWT. Include buttons for opening an image, zooming in/out, and scrolling

through multiple images. Display the selected image in a Canvas.

8 Chat Application:
 Design a simple chat application with TextAreas for displaying chat history and entering messages, a Button

to send messages, and a TextField for entering the username.

9 File Explorer:
 Create a basic file explorer using AWT components. Include a List or TextArea to display the list of files in a

directory and buttons for navigating through directories.

10 Color Picker:
 Develop a color picker application using AWT. Include sliders for adjusting RGB values, a Canvas to display

the selected color, and a TextField to show the hexadecimal color code

CITS : IT & ITES - Computer Software Application - Exercise 119

© NIMI

NOT TO BE REPUBLISHED

217

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 120 : Install, set up the environment & run
Python

At the end of this exercise you shall be able to
• download python software
• install python.

Module 7 : Programming Language (Python)

Tools/Materials
• PC/Laptop with Windows OS
• Latest Version of Python

Requirements

Procedure

Python is a high-level, interpreted, and general-purpose programming language known for
its readability and simplicity. Python has gained widespread popularity due to its ease of
learning, versatility, and extensive community support. This module will guide you Python
programming with hands-on examples and real-world applications.
In order to become Python developer, the first step is to learn how to install or update Python
on a local machine or computer. In this tutorial, we will discuss the installation of Python on
various operating systems.

Installation on Windows
Visit the link https://www.python.org to download the latest release of Python. In this process, we will install
Python 3.12.2 on our Windows operating system. When we click on the above link, it will bring us the following
page.
Step 1: Download Python:

•	 Visit	the	official	Python	website:	https://www.python.org/.
• Navigate to the “Downloads” section.
• Download the latest version suitable for your operating system (Windows, macOS, or Linux)

Fig 1

© NIMI

NOT TO BE REPUBLISHED

218

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 120

Step 2: Install Python:
• Run the installer that you downloaded.

• During the installation, make sure to check the option that says “Add Python to PATH” to make Python
accessible from the command line.

• Complete the installation by following the prompts.

© NIMI

NOT TO BE REPUBLISHED

219

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 120

Verify Python Installation:
1 Open Command Prompt or Terminal:

• On Windows, you can press Win + R, type cmd, and press Enter.

• On macOS or Linux, you can open Terminal.

2 Check Python Version:

• Type the following command and press Enter:

• This should display the installed Python version.

• You can also check the Python interpreter by typing ‘python’ :

This will open the Python interpreter, and you can exit it by typing exit().

Set Up Python Environment:
1 Install a Code Editor (Optional):

• You may choose a code editor like Visual Studio Code, PyCharm, or Jupyter Notebook for a more
convenient development environment.

2 Create a Virtual Environment (Optional but recommended):
• Open the command prompt or terminal and navigate to your project directory.

• Run the following commands to create and activate a virtual environment:

CITS : IT & ITES - Computer Software Application - Exercise 120

© NIMI

NOT TO BE REPUBLISHED

220

COMPUTER SOFTWARE APPLICATION - CITS

• On Windows, activate the virtual environment with:

• By using virtual environments, you can maintain a clean and organized development environment for
each of your Python projects.

CITS : IT & ITES - Computer Software Application - Exercise 120

© NIMI

NOT TO BE REPUBLISHED

221

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 121 : Use Command Line and IDE to create
 and execute a python program

At the end of this exercise you shall be able to
• develop simple python programs and execute it in Commandline/IDE.

Tools/Materials
• PC/Laptop with Windows OS
• Latest Version of Python

Requirements

Procedure
Write and Run a Simple Python Program

1 Create a Python File:
•	 Use	a	text	editor	or	your	chosen	code	editor	to	create	a	file	with	a	.py	extension	(e.g.,	hello.py).

2 Write a Simple Python Program:
•	 Open	the	file	and	write	a	simple	Python	program,	for	example:

Run the Program:
Method 1: Usingcommand prompt or terminal

•	 Save	the	file	and	return	to	the	command	prompt	or	terminal.

•	 Navigate	to	the	directory	where	your	Python	file	is	located.

• Run the Python script with:

CITS : IT & ITES - Computer Software Application - Exercise 120

© NIMI

NOT TO BE REPUBLISHED

222

COMPUTER SOFTWARE APPLICATION - CITS

Method 2: UsingPython IDLE
Python IDLE (Integrated Development and Learning Environment) is an integrated development environment
for Python. It is a simple and lightweight IDE that comes bundled with the Python programming language. IDLE
provides a convenient environment for writing, testing, and debugging Python code.

1 Open IDLE:
• Launch IDLE by searching for it in your computer’s applications or programs menu.

• On Windows, you can also open it by searching for “IDLE” in the Start menu.

2 Create a New File:
• In IDLE, go to the “File” menu and choose “New File” to open a new script editor window.

CITS : IT & ITES - Computer Software Application - Exercise 121

© NIMI

NOT TO BE REPUBLISHED

223

COMPUTER SOFTWARE APPLICATION - CITS

3 Write Your Python Code:
• Write or paste your Python code into the script editor.

4 Save Your Python Script:
• Save your Python script by going to the “File” menu and selecting “Save” or “Save As.”

•	 Choose	a	file	name	and	location	on	your	computer	to	save	the	script	with	a	.py	extension	(e.g.,	myscript.
py).

CITS : IT & ITES - Computer Software Application - Exercise 121 CITS : IT & ITES - Computer Software Application - Exercise 121

© NIMI

NOT TO BE REPUBLISHED

224

COMPUTER SOFTWARE APPLICATION - CITS

5 Run Your Python Script:
• After saving your script, you can run it by selecting the “Run” menu and choosing “Run Module” or using

the keyboard shortcut F5.

• Alternatively, you can use the command Run -> Run Module from the menu.

6 View Output in Shell:
• If your script includes print statements or generates output, you can view the results in the Python Shell

window, which typically opens automatically when you run the script.

• If the Shell window is not open, you can open it by selecting “Shell” from the “View” menu.

CITS : IT & ITES - Computer Software Application - Exercise 121

© NIMI

NOT TO BE REPUBLISHED

225

COMPUTER SOFTWARE APPLICATION - CITS

7 Interactive Mode:
• You can also run Python code interactively in the IDLE shell. Just type or paste the code directly into the

shell, press Enter, and see the results immediately.

8 Debugging (Optional):
• IDLE	provides	a	basic	debugger	 that	can	help	you	 identify	and	fix	errors	 in	your	code.	You	can	set	

breakpoints and step through your code to investigate issues.

9 Close IDLE:
• Once	you	have	finished	working	with	IDLE,	you	can	close	it	like	any	other	application

 Now, you have successfully installed Python, set up your environment, and run a simple Python program.
You are ready to start coding in Python!

CITS : IT & ITES - Computer Software Application - Exercise 121 CITS : IT & ITES - Computer Software Application - Exercise 121

© NIMI

NOT TO BE REPUBLISHED

226

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 122 : Write and test a python program to
 demonstrate print statement, comments,
 and different types of variables

At the end of this exercise you shall be able to
• develop python program to demonstrate print statement, comments, and different types of variables.

Tools/Materials
• PC/Laptop with Windows OS
• Latest Version of Python

Requirements

Procedure
TASK 1: String Variables

Code:
Example 1: String Variables with Comment

name = “John”

print(“My name is”, name)

Explanation:
• name = “John”: This line declares a variable named name and assigns the string value “John” to it. In

Python, you can create a string by enclosing characters in single or double quotes.

• print(“My name is”, name): The print statement is used to display output. In this case, it prints the string “My
name is” followed by the value stored in the name variable. Multiple values can be printed in a single print
statement, and they are separated by commas.

Output:

TASK 2: Numeric Variables
Code:
Example 2: Variables and Data Types

#	Declare	variables	with	different	data	types

name = “John” # String

age = 25 # Integer

height = 5.9 # Float

is_student = True # Boolean

© NIMI

NOT TO BE REPUBLISHED

227

COMPUTER SOFTWARE APPLICATION - CITS

Print variables

print(“Student Details”)

print(“---------------”)

print(“Name:”, name)

print(“Age:”, age)

print(“Height:”, height)

print(“Is Student?”, is_student)

Explanation:
•	 Variables	(name,	age,	height,	is_student)	are	declared	with	different	data	types	(String,	Integer,	Float,	Boolean).

• The print statements display the values of these variables.

Output:

TASK 3: Multiple Assignments
Code:
Example 3: Multiple Assignments

Multiple assignments in a single line

x, y, z = 10, 20, 30

Print the variables

print(“x:”, x)

print(“y:”, y)

print(“z:”, z)

Explanation:
• Multiple variables (x, y, z) are assigned values in a single line.

• The print statements display the values of these variables.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 122

© NIMI

NOT TO BE REPUBLISHED

228

COMPUTER SOFTWARE APPLICATION - CITS

TASK 4: String Concatenation
Code:
Example 4: String Concatenation

String variables

first_name	=	“Neenu”

last_name = “Sharma”

Concatenate strings

full_name	=	first_name	+	“	“	+	last_name

Print the full name

print(“Full Name:”, full_name)

Explanation:
•	 String	variables	(first_name	and	last_name)	are	concatenated	using	the	+	operator.

• The print statement displays the full name.

Output:

TASK 5: Formatted String
Code:
Example 5: Formatted String

Format string with variables

item = “Laptop”

price = 1200.50

Print formatted string

print(f”The {item} costs RS.{price:.2f}”)

Explanation:
• A formatted string is created using an f-string, allowing variables (item and price) to be embedded directly into

the string.

• The print statement displays the formatted string, including the price formatted with two decimal places.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 122

© NIMI

NOT TO BE REPUBLISHED

229

COMPUTER SOFTWARE APPLICATION - CITS

Related Exercises:
Here are the questions related to writing and testing a Python program to demonstrate print statements, comments,
and	different	types	of	variables:

1 Print Statement: Write a Python program to display the message “Welcome to CSA_CITS!” using the print
statement.

2 Comments: Create a Python program with both single-line and inline comments. Provide comments explaining
the purpose of the code.

3 Integer Variable: Write a Python program that declares an integer variable (mark) and prints a message
including the mark.

4	 Float	Variable:	Develop	a	Python	program	with	a	float	variable	(side)	representing	the	side	of	a	square.	Print	
a message displaying the side.

5 String Variable: Create a Python program declaring a stringvariable (city_name). Print a message including the
city_name.(Eg. You are from Delhi).

CITS : IT & ITES - Computer Software Application - Exercise 122 CITS : IT & ITES - Computer Software Application - Exercise 122

© NIMI

NOT TO BE REPUBLISHED

230

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 123 : Write and test a python program to
 perform data and data type operations,
 string operations, date, input and output,
 output formatting and operators

At the end of this exercise you shall be able to
• develop python program to perform data and data type operations, string operations, date, input and output,

output formatting and operators

Tools/Materials
• PC/Laptop with Windows OS
• Latest Version of Python

Requirements

Procedure
TASK 1: Arithmetic Operators

Code:
Arithmetic Operators

num1 = 10

num2 = 3124

sum_result = num1 + num2

difference_result	=	num1	-	num2

product_result = num1 * num2

division_result = num1 / num2

remainder_result = num1 % num2

print(f”Sum: {sum_result}”)

print(f”Difference:	{difference_result}”)

print(f”Product: {product_result}”)

print(f”Division: {division_result}”)

print(f”Remainder: {remainder_result}”)

Explanation:
• Addition (+): Adds num1 and num2 together, resulting in 13.

• Subtraction (-): Subtracts num2 from num1, resulting in 7.

• Multiplication (*): Multiplies num1 and num2, resulting in 30.

• Division (/): Divides num1 by num2, resulting in approximately 3.33333.

• Modulus (%): Computes the remainder when num1 is divided by num2, resulting in 1.

These are basic arithmetic operations showcasing how Python handles addition, subtraction, multiplication,
division, and modulus operations. The results are then printed for each operation.

Output:

© NIMI

NOT TO BE REPUBLISHED

231

COMPUTER SOFTWARE APPLICATION - CITS

TASK 2: Assignment Operators
Code:
Assignment Operators

x = 5

y = 3

x += y

print(f”x after addition: {x}”)

y *= 2

print(f”y after multiplication: {y}”)

Output:

Explanation:
• Addition Assignment (+=): Adds the value of y to the current value of x and assigns the result back to x. In this

case, x becomes 8 (original x value of 5 plus y value of 3).

• Multiplication Assignment (*=): Multiplies the value of y by 2 and assigns the result back to y. In this case, y
becomes 6 (original y value of 3 multiplied by 2).

• These assignment operators provide a concise way to update the values of variables based on their current
values.	The	results	after	each	assignment	operation	are	then	printed	for	verification.

TASK 3 : Comparison Operators
Code:
Comparison Operators

x = 10

y = 20

equals = x == y # Equal to

not_equals = x !=y # Not equal to

greater_than = x >y # Greater than

less_than = x <y # Less than

greater_equal = x >= y # Greater than or equal to

CITS : IT & ITES - Computer Software Application - Exercise 123

© NIMI

NOT TO BE REPUBLISHED

232

COMPUTER SOFTWARE APPLICATION - CITS

less_equal = x <= y # Less than or equal to

Print each result on a separate line

print(f”Equals: {equals}”)

print(f”Not Equals: {not_equals}”)

print(f”Greater Than: {greater_than}”)

print(f”Less Than: {less_than}”)

print(f”Greater Equal: {greater_equal}”)

print(f”Less Equal: {less_equal}”)

Output:

Explanation:
Here, we declare two variables x and y with values 10 and 20, respectively. Then, we use comparison operators
to compare these values.

• equals: Checks if x is equal to y. If true, equals will be True, otherwise False.

• not_equals: Checks if x is not equal to y. If true, not_equals will be True, otherwise False.

• greater_than: Checks if x is greater than y. If true, greater_than will be True, otherwise False.

• less_than: Checks if x is less than y. If true, less_than will be True, otherwise False.

• greater_equal: Checks if x is greater than or equal to y. If true, greater_equal will be True, otherwise False.

• less_equal: Checks if x is less than or equal to y. If true, less_equal will be True, otherwise False.

TASK 4: Logical Operators
Code:
Logical Operators

a = True

b = False

logical_and = a and b # Logical AND

logical_or = a or b # Logical OR

logical_not = not a # Logical NOT

Print each result on a separate line

print(f”Logical AND: {logical_and}”)

print(f”Logical OR: {logical_or}”)

print(f”Logical NOT: {logical_not}”)

Output:

CITS : IT & ITES - Computer Software Application - Exercise 123

© NIMI

NOT TO BE REPUBLISHED

233

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:
• a is assigned the boolean value True.

• b is assigned the boolean value False.

1 Logical AND (and) Operator:

• logical_and is assigned the result of the logical AND operation between a and b.

• If both a and b are True, then logical_and will be True; otherwise, it will be False.

2. Logical OR (or) Operator:

• logical_or is assigned the result of the logical OR operation between a and b.

• If at least one of a or b is True, then logical_or will be True; otherwise, it will be False.

3. Logical NOT (not) Operator:

• logical_not is assigned the result of the logical NOT operation on a.

• If a is True, then logical_not will be False; if a is False, then logical_not will be True.

TASK 5: Working with dates
Code:
Example 3: Working with dates

fromdatetime import datetime, timedelta

current_date = datetime.now()

future_date = current_date + timedelta(days=7)

print(“Current Date:”, current_date)

print(“Future Date:”, future_date)

Explanation:
In this example, we are working with dates using the datetime module in Python. Here’s a breakdown of the code:

1 Fromdatetime import datetime, timedelta: This line imports the datetime class and the timedelta class from the
datetime module. The datetime class is used for working with dates and times, and timedelta represents the
difference	between	two	dates	or	times.

2 Current_date = datetime.now(): This line creates a datetime object representing the current date and time. The
datetime.now() function returns the current date and time.

3 Future_date = current_date + timedelta(days=7): This line calculates a future date by adding a timedelta of 7
days to the current date. The timedelta(days=7) represents a duration of 7 days.

4 Print(“Current Date:”, current_date): This line prints the current date and time.

5 Print(“Future Date:”, future_date): This line prints the calculated future date, which is 7 days ahead of the
current date.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 123

© NIMI

NOT TO BE REPUBLISHED

234

COMPUTER SOFTWARE APPLICATION - CITS

TASK 6: Input and Output
Code:
Example 4: User input and output

user_input = input(“Enter your name: “)

print(“Hello, “ + user_input + “!”)

Explanation:
In this example, we demonstrate how to take user input and display output based on that input.

1 user_input = input(“Enter your name: “): This line prompts the user to enter their name. The input() function is
used to receive input from the user, and the provided message (“Enter your name: “) serves as a prompt.

2 print(“Hello, “ + user_input + “!”): This line prints a greeting using the user’s input. The + operator is used to
concatenate the strings, and the exclamation mark is included for emphasis.

Output:

TASK 7: Output Formatting and Operators
Code:
Example 5: Output formatting and comparison operators

x = 10

y = 15

print(f”Is {x} equal to {y}? {x == y}”)

print(f”Is {x} not equal to {y}? {x != y}”)

Explanation:
This example demonstrates output formatting and the use of comparison operators.

1 x = 10 and y = 15: These lines assign values to the variables x and y.

2 print(f”Is {x} equal to {y}? {x == y}”): This line uses an f-string to format the output. It checks whether x is equal
to y using the equality operator (==) and prints the result.

3 print(f”Is {x} not equal to {y}? {x != y}”): Similarly, this line checks whether x is not equal to y using the inequality
operator (!=) and prints the result.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 123

© NIMI

NOT TO BE REPUBLISHED

235

COMPUTER SOFTWARE APPLICATION - CITS

Related Exercises
1 Data Type Operations:

• Question:	Create	a	Python	program	that	performs	operations	on	different	data	 types	(int,	float,	string).	
Include arithmetic operations and display the results.

2 String Operations:
• Question: Write a Python program that manipulates strings. Perform operations like concatenation, slicing,

and	converting	the	case	of	the	string.	Display	the	modified	strings.

3 Date Operations:
• Question: Develop a Python program that works with dates. Perform operations such as getting the current

date,	adding	a	specified	number	of	days	to	the	current	date,	and	displaying	the	results.

4 Input and Output:
• Question: Create a Python program that takes user input, processes it, and displays the result. Include

appropriate	prompts	for	the	user	and	handle	different	data	types.

5 Output Formatting and Operators:
• Question: Write a Python program that uses output formatting and demonstrates the use of comparison

operators. Include examples that format output using f-strings and perform comparisons between variables.

CITS : IT & ITES - Computer Software Application - Exercise 123

© NIMI

NOT TO BE REPUBLISHED

236

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 124 : Determine the sequence of execution
 based on operator precedence

At the end of this exercise you shall be able to
• develop python program to determine the sequence of execution based on operator precedence

Tools/Materials
• PC/Laptop with Windows OS
• Latest Version of Python

Requirements

Procedure
TASK 1: Arithmetic Operations

Code:
Program to demonstrate arithmetic operations based on precedence

num1	=	float(input(“Enter	the	first	number:	“))

num2	=	float(input(“Enter	the	second	number:	“))

result = num1 * (num2 + 3) / 2

print(“Result:”, result)

Output:

TASK 2: Comparison and Logical Operators
Code:
Program to demonstrate comparison and logical operators based on precedence

x = int(input(“Enter a number: “))

y = int(input(“Enter another number: “))

result = x > 0 and (y % 2 == 0 or y > 10)

print(“Result:”, result)

Output:

© NIMI

NOT TO BE REPUBLISHED

237

COMPUTER SOFTWARE APPLICATION - CITS

TASK 3: Bitwise Operations
Code:
Program to demonstrate bitwise operations based on precedence

a = int(input(“Enter an integer: “))

b = int(input(“Enter another integer: “))

result = (a & b) | (a ^ b)

print(“Result:”, result)

Explanation:
1 User Input:

• The program prompts the user to enter two integers (aandb).

2 Bitwise Operations:
• (a& b): Bitwise AND operation on a and b.

• (a ^ b): Bitwise XOR (exclusive OR) operation on a and b.

• (a & b) | (a ^ b): Bitwise OR operation on the results of the AND and XOR operations.

3 Result Display:
•	 The	final	result	of	the	bitwise	operations	is	stored	in	the	variable	result.

• The program prints the result to the console using print(“Result:”, result).

4 Operator Precedence:
•	 The	&	(AND)	and	^	(XOR)	operations	have	higher	precedence	than	|	(OR),	so	they	are	performed	first.

5 Observation:
• Users can input integer values, and the program will demonstrate the bitwise AND, XOR, and OR operations

based on the precedence of these bitwise operators.

Output:

TASK 4: String Concatenation and Repetition
Code:
Program to demonstrate string concatenation and repetition based on precedence

str1	=	input(“Enter	the	first	string:	“)

str2 = input(“Enter the second string: “)

result = str1 + “ is “ * 3 + str2

print(“Result:”, result)

Explanation:
1 User Input:

• The program prompts the user to enter two strings (str1 and str2).

CITS : IT & ITES - Computer Software Application - Exercise 124

© NIMI

NOT TO BE REPUBLISHED

238

COMPUTER SOFTWARE APPLICATION - CITS

2 String Concatenation and Repetition:
• str1 + “ is “ * 3 + str2: String concatenation of str1, the repeated string “ is “ three times, and str2.

3 Result Display:
•	 The	final	result	of	the	string	concatenation	and	repetition	is	stored	in	the	variable	result.

• The program prints the result to the console using print(“Result:”, result).

4 Observation:
• Users can input any strings, and the program will demonstrate the concatenation of strings and the repetition

of the middle string based on the precedence of string concatenation and repetition.

Output:

Related Exercises:
1 String Operations:

• Question 1: Write a Python program to concatenate two strings and print the result.

2 Date Operations:
• Question 2: Create a Python program that prints the current date and the date exactly one week from now.

3 User Input and Output:
• Question 3: Develop a Python program that takes user input for their name and greets them using the input.

4 Output Formatting:
• Question 4: Write a Python program that compares two numbers and prints the result in a formatted string.

5 Bitwise Operations:
• Question 5: Implement a Python program that takes two integers as input, performs bitwise AND and OR

operations, and prints the result.

CITS : IT & ITES - Computer Software Application - Exercise 124

© NIMI

NOT TO BE REPUBLISHED

239

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 125 : Construct and analyze code segments
 that use branching statements

At the end of this exercise you shall be able to
• develop python program to Construct and analyze code segments that use branching statements.

Tools/Materials
• PC/Laptop with Windows OS
• Latest Version of Python

Requirements

Procedure
Indentation
In Python, indentation is the whitespace (typically spaces or tabs) at the beginning of a line that determines the
grouping of statements. Unlike many other programming languages that use curly braces {} or keywords like
begin and end to indicate code blocks, Python relies on indentation for this purpose.

Indentation is not just for readability; it is a syntactical element in Python. Blocks of code with the same level of
indentation	are	considered	part	of	the	same	block	or	suite.	Indentation	is	used	to	define	the	scope	of	control	flow	
structures, such as loops, conditionals, functions, and classes.

For example, in the following Python code:

if x > 0:

print(“x is positive”)

 y = x * 2

print(“Double of x is:”, y)

The statements print(“x is positive”) and y = x * 2 are indented under the if x > 0: statement, indicating that they
are part of the same block and will be executed only if the condition is true.

It’s essential to maintain consistent indentation throughout your code to avoid syntax errors and to ensure that the
structure of your code is correctly interpreted by the Python interpreter. Typically, four spaces are used for each
level	of	indentation,	although	you	can	also	use	tabs	or	a	different	number	of	spaces	as	long	as	it	is	consistent	
within the same block.

TASK 1: If Statement
Code:
Program to check if a number is positive

num = int(input(“Enter a number: “))

ifnum> 0:

print(“The number is positive.”)

In this example, if the entered number is greater than 0, it prints a message indicating that the number is positive.

Output:

© NIMI

NOT TO BE REPUBLISHED

240

COMPUTER SOFTWARE APPLICATION - CITS

TASK 2: If-Else Statement
Code:
Program to check if a number is even or odd

num = int(input(“Enter a number: “))

ifnum % 2 == 0:

print(“The number is even.”)

else:

print(“The number is odd.”)

Here, the program checks if the entered number is even or odd. If the remainder when divided by 2 is 0, it prints
a message indicating that the number is even. Otherwise, it prints a message indicating that the number is odd.

Output:

TASK 3: Nested if Statements
Code:
Simple Python Program to print the largest of the three numbers.

Taking user input for three numbers

a = int(input(“Enter a: “))

b = int(input(“Enter b: “))

c = int(input(“Enter c: “))

Checking if ‘a’ is the largest

if a > b and a > c:

 # If the condition is true, we will enter this block

 print(“From the above three numbers, given ‘a’ is the largest”)

Checking if ‘b’ is the largest

if b > a and b > c:

 # If the condition is true, we will enter this block

 print(“From the above three numbers, given ‘b’ is the largest”)

Checking if ‘c’ is the largest

if c > a and c > b:

 # If the condition is true, we will enter this block

 print(“From the above three numbers, given ‘c’ is the largest”)

CITS : IT & ITES - Computer Software Application - Exercise 125

© NIMI

NOT TO BE REPUBLISHED

241

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:
•	 a	=	int(input(“Enter	a:	“)):	Takes	user	input	for	the	first	number	‘a’	and	converts	it	to	an	integer.

• b = int(input(“Enter b: “)): Takes user input for the second number ‘b’ and converts it to an integer.

• c = int(input(“Enter c: “)): Takes user input for the third number ‘c’ and converts it to an integer.

• The code uses a series of if statements to check which number among ‘a’, ‘b’, and ‘c’ is the largest.

• if a > b and a > c:: Checks if ‘a’ is greater than both ‘b’ and ‘c’.

• print(“From the above three numbers, given ‘a’ is the largest”): Prints a message if ‘a’ is the largest.

• Similar if statements and messages are present for ‘b’ and ‘c’.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 125

TASK 4: Python program to understand the elif statement
Code:
Simple Python program to understand the elif statement

Taking an integer input for marks dynamically

marks = int(input(“Enter the marks? “))

Checking various conditions using if-elif-else statements

if marks > 85 and marks <= 100:

 # If the condition is true, we will enter this block

 print(“Congrats! You scored grade A...”)

elif marks > 60 and marks <= 85:

 # If the condition is true, we will enter this block

© NIMI

NOT TO BE REPUBLISHED

242

COMPUTER SOFTWARE APPLICATION - CITS

 print(“You scored grade B+...”)

elif marks > 40 and marks <= 60:

 # If the condition is true, we will enter this block

 print(“You scored grade B...”)

elif marks > 30 and marks <= 40:

 # If the condition is true, we will enter this block

 print(“You scored grade C...”)

else:

 # If none of the above conditions are true, we will enter this block

 print(“Sorry, you have failed.”)

Explanation:
• marks = int(input(“Enter the marks? “)): Takes user input for marks and converts it to an integer.

•	 The	code	uses	if-elif-else	statements	to	check	different	conditions	based	on	the	value	of	‘marks’.

•	 Conditions	are	checked	in	the	order	they	appear,	and	the	first	true	condition’s	block	is	executed.

• If marks are greater than 85 and less than or equal to 100, it prints “Congrats! You scored grade A...”

• If not, it moves to the next elif and checks if marks are greater than 60 and less than or equal to 85.

• The process continues for the other elif conditions.

• If none of the conditions are true, the else block is executed, and it prints “Sorry, you have failed.”

Output:

CITS : IT & ITES - Computer Software Application - Exercise 125

TASK 5: Match Case
Code:
num=int(input(“Enter the Number: “))

defdescribe_number(num):

 matchnum:

 case 0:

 return “Zero”

© NIMI

NOT TO BE REPUBLISHED

243

COMPUTER SOFTWARE APPLICATION - CITS

 case 1 | 2:

 return “Small positive number”

 case 3 | 4 | 5:

 return “Medium positive number”

 case _ if num> 5:

 return “Large positive number”

 case _:

 return “Negative number or other cases”

Example usage

result = describe_number(num)

print(result)

Explanation:
• num = int(input(“Enter the Number: “)): This line prompts the user to enter a number, converts the input to an

integer (int), and stores it in the variable num.

•	 defdescribe_number(num)::	This	line	defines	a	function	named	describe_number	that	takes	a	single	argument	
num.

• matchnum:: This is the beginning of a match statement, a new feature introduced in Python 3.10. It allows you
to perform pattern matching on the value of num.

• case 0:: This line checks if num is equal to 0.

• return “Zero”: If the value of num is 0, the function returns the string “Zero”.

• case 1 | 2:: This line checks if num is either 1 or 2.

• return “Small positive number”: If the value of num is 1 or 2, the function returns the string “Small positive
number”.

• case 3 | 4 | 5:: This line checks if num is either 3, 4, or 5.

• return “Medium positive number”: If the value of num is 3, 4, or 5, the function returns the string “Medium
positive number”.

• case _ if num> 5:: This line is a wildcard case that matches any value greater than 5.

• return “Large positive number”: If the value of num is greater than 5, the function returns the string “Large
positive number”.

• case _:: This line is another wildcard case that matches any other value.

•	 return	“Negative	number	or	other	cases”:	If	the	value	of	num	doesn’t	match	any	of	the	specific	cases	mentioned	
earlier, the function returns the string “Negative number or other cases”.

• result = describe_number(num): This line calls the describe_number function with the user-inputted value num
and stores the result in the variable result.

• print(result): Finally, this line prints the result, which is the description of the entered number based on the
defined	cases	in	the	describe_number	function.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 125

© NIMI

NOT TO BE REPUBLISHED

244

COMPUTER SOFTWARE APPLICATION - CITS

Related Exercises:
1 Check if a number is even or odd.

2 Determine if a given year is a leap year.

3 Find the maximum of three numbers.

4 Determine if a student has passed or failed based on the percentage obtained.

5 Check if a character is a vowel or a consonant.

6 Determine the type of a triangle based on its sides.(Scalene/ Isosceles/ Equilateral)

7 Calculate the factorial of a number.

8 Determine if a number is prime.

9 Check if a given string is a palindrome.

10 Convert a numerical grade (input the percentage of mark) to a letter grade.

CITS : IT & ITES - Computer Software Application - Exercise 125

© NIMI

NOT TO BE REPUBLISHED

245

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 126 : Construct and analyze code segments
 that perform iteration

At the end of this exercise you shall be able to
• develop python program to Construct and analyze code segments that perform iteration.

Tools/Materials
• PC/Laptop with Windows OS
• Latest Version of Python

Requirements

Procedure
Python While loop
TASK 1: Python Program for printing numbers from 1 to n
Code:
limit=int(input(“Enter the Limit: “))

Initialize the variable i with the value 1

i = 1

The loop will continue as long as i is less than or equal to limit

whilei<= limit:

Print the current value of i, followed by a space instead of a newline

 print(i, end=’ ‘)

Increment the value of i by 1 in each iteration

 i += 1

Explanation:
• i is initialized to 1.

• The while loop continues as long as the condition i<= limit is true.

• Inside the loop, print(i, end=’ ‘) prints the current value of i followed by a space, without moving to the next line.

• i += 1 increments the value of i by 1 in each iteration of the loop.

Output:

© NIMI

NOT TO BE REPUBLISHED

246

COMPUTER SOFTWARE APPLICATION - CITS

TASK 2: While loops in Python for Printing those numbers divisible by either 5 or 7 within 1 to
 limit using a while loop
Code:
Take user input to set the limit for the loop

limit = int(input(“Enter the Limit: “))

Initialize a variable i with the value 1

i = 1

#	The	loop	will	continue	as	long	as	i	is	less	than	the	specified	limit

whilei< limit:

Check if the current value of i is divisible by 5 or 7

				ifi	%	5	==	0	or	i	%	7	==	0:									

Print the current value of i, followed by a space instead of a newline

print(i, end=’ ‘)

Increment the value of i by 1 in each iteration

i+=1
Explanation:
• limit = int(input(“Enter the Limit: “)): Takes user input to set the upper limit for the loop. The int() function is used

to convert the input to an integer.

• i = 1: Initializes a variable i with the value 1.

•	 whilei<	limit::	The	while	loop	continues	as	long	as	i	is	less	than	the	specified	limit.

• if i % 5 == 0 or i % 7 == 0:: Checks whether the current value of i is divisible by 5 or 7. The % operator
calculates the remainder after division.

• print(i, end=’ ‘): If the condition in the if statement is true, it prints the current value of i, followed by a space
instead of a newline.

• i += 1: Increments the value of i by 1 in each iteration of the loop.

The	loop	iterates	through	the	numbers	from	1	to	the	specified	limit,	and	for	each	number,	it	checks	if	it	is	divisible	
by	5	or	7.	If	the	condition	is	true,	it	prints	the	number.	The	loop	continues	until	i	reaches	the	specified	limit.

Output:

TASK 3: Write a program for the sum of squares of the first n natural numbers using a while loop
Code:
Python program example to show the use of while loop

Take user input to set the limit for the loop

n = int(input(“Enter the limit: “))

Initializing summation and a counter for iteration

summation = 0

c = 1

CITS : IT & ITES - Computer Software Application - Exercise 126

© NIMI

NOT TO BE REPUBLISHED

247

COMPUTER SOFTWARE APPLICATION - CITS

while c <= n: # Specifying the condition of the loop

 # Beginning the code block

 summation = c**2 + summation

 c = c + 1 # Incrementing the counter

#	Print	the	final	sum

print(“The sum of squares is”, summation)

Explanation:
1 n = int(input(“Enter the limit: “)): Takes user input to set the upper limit for the loop. The int() function is used to

convert the input to an integer.

2 summation = 0: Initializes a variable summation to 0. This variable will store the sum of squares.

3 c = 1: Initializes a counter variable c with the value 1.

4	 while	c	<=	n::	The	while	loop	continues	as	long	as	c	is	less	than	or	equal	to	the	specified	limit.

5 summation = c**2 + summation: Calculates the square of c and adds it to the current value of summation.

6 c = c + 1: Increments the value of c by 1 in each iteration of the loop.

7	 After	the	loop,	print(“The	sum	of	squares	is”,	summation):	Prints	the	final	sum	of	squares.

This program is a straightforward example of using a while loop to iteratively calculate the sum of squares.

Output:

Related Exercises:
Develop the following Python programs using while loop

1 Display Sum of digits of a number and its reverse

2 Print the cube of all numbers from 1 to a given number

3 Factorial of a number

4 Display the Fibonacci series upto ‘n’

5 Write a program to display all prime numbers within a range

Python For Loop
TASK 1: Python For Loop in Python String
Code:
Iterating over a String

print(“String Iteration”)

s = input(“Enter the String: “)

foriin s:

 print(i)

Explanation:
This code uses a for loop to iterate over a string and print each character on a new line. The loop assigns each
character to the variable i and continues until all characters in the string have been processed.

CITS : IT & ITES - Computer Software Application - Exercise 126

© NIMI

NOT TO BE REPUBLISHED

248

COMPUTER SOFTWARE APPLICATION - CITS

TASK 2: Python For Loop with a step size
Code:
limit=int(input(“Enter the Limit: “))

fori in range(0, 20, 2):

 print(i)

Explanation:
This code uses a for loop in conjunction with the range() function to generate a sequence of numbers starting
from 0, up to (but not including) limit, and with a step size of 2. For each number in the sequence, the loop prints
its value using the print() function.

Output:

TASK 3: Python For Loop inside a For Loop
Code:
limit=int(input(“Enter the Limit: “))

fori in range(1, limit):

 for j in range(1, limit):

 print(i, j)

Explanation:
This code uses nested for loops to iterate over two ranges of numbers (1 to limit inclusive) and prints the value
of i and j for each combination of the two loops. The inner loop is executed for each value of i in the outer loop.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 126

Output:

© NIMI

NOT TO BE REPUBLISHED

249

COMPUTER SOFTWARE APPLICATION - CITS

TASK 4 : Right-angled pattern with characters
Code:
print(“The character pattern using the ascii value is: “)

asciiValue = 65 # here, we are giving the ASCII value of A

foriin range(0, 5): # here, we are declaring the for loop for I values

 for j in range(0, i + 1): # here, we are declaring the for loop for j values

 # Here, the below will convert the ASCII value to the character

 alphabate = chr(asciiValue)

 print(alphabate, end=’ ‘) # Here, we are printing the alphabets

 asciiValue += 1

Here, we are incrementing the asciivalue by 1 after each iteration

 print()

Explanation:
• The outer loop (for i in range(0, 5)) controls the number of rows in the pattern (5 rows in this case).

• The inner loop (for j in range(0, i + 1)) controls the number of characters in each row, and it increases with each
iteration of the outer loop.

• chr(asciiValue) converts the current ASCII value to the corresponding character.

• print(alphabate, end=’ ‘) prints the character without moving to the next line.

• asciiValue += 1 increments the ASCII value for the next character in the sequence.

• print() moves to the next line for the next row in the pattern.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 126

© NIMI

NOT TO BE REPUBLISHED

250

COMPUTER SOFTWARE APPLICATION - CITS

Related Exercises:
Develop the following Python Programs using for loop|:

1 Display numbers from -10 to -1

2 Count the number of vowels in a string.

3 Print the following patterns.

4 Print numbers divisible by 3 or 5 from 1 to limit.

5 Count the total number of digits in a number.

CITS : IT & ITES - Computer Software Application - Exercise 126

© NIMI

NOT TO BE REPUBLISHED

251

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 127 : Document code segments using
 comments and documentation strings

At the end of this exercise you shall be able to
• develop python program to document code segments using comments and documentation strings.

Tools/Materials
• PC/Laptop with Windows OS
• Latest Version of Python

Requirements

Procedure
TASK 1: Single-line comment
Code:
This is a single-line comment

variable = int(input(“Enter the Value: “)) # Inline comment for variable assignment

The next line prints the variable

print(variable)

Explanation:
1	 The	 first	 line	 is	 a	 single-line	 comment.	Comments	 are	 ignored	by	 the	Python	 interpreter	 and	are	 used	 to	

provide explanations or notes within the code.

2 The second line prompts the user to enter a value. The input() function takes user input as a string, and int()
is used to convert it to an integer. The result is assigned to the variable.

3 The inline comment after the assignment explains that it is a comment related to the variable assignment.

4 The last line prints the value of the variable using the print() function.

Output:

TASK 2: Multi-line Comments
Code:
“””

This is a multi-line comment.

It can span multiple lines.

Use triple double-quotes or single-quotes.

“””

variable = input(“Enter a String: “)

print(variable)

© NIMI

NOT TO BE REPUBLISHED

252

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:
• Multi-line comments are enclosed in triple double-quotes (“””).

Output:

TASK 3: Documentation String (Docstring)
Code:
defadd_numbers(a, b):

 “””

 This function adds two numbers.

 Args:

								a	(int):	The	first	number.

 b (int): The second number.

 Returns:

 int: The sum of the two numbers.

 “””

 result = a + b

 return result

Example usage:

sum_result = add_numbers(5, 3)

print(“Sum:”, sum_result)

Explanation:
This	code	defines	a	function	add_numbers	that	takes	two	integer	parameters		(a	andb)	and	returns	their	sum.	It	
includes a docstring that provides information about the function.

1 defadd_numbers(a, b)::

•	 The	def	keyword	is	used	to	define	a	function.

• add_numbers is the function name.

•	 (a,	b)	specifies	the	parameters	the	function	takes.

2 “”” ... “””:

• The triple double-quoted string is a docstring.

• It serves as documentation for the function.

• It describes the purpose of the function, its parameters, and the return value.

3 result = a + b:

• This line calculates the sum of a and b and assigns it to the variable result.

CITS : IT & ITES - Computer Software Application - Exercise 127

© NIMI

NOT TO BE REPUBLISHED

253

COMPUTER SOFTWARE APPLICATION - CITS

4 return result:

• The return statement is used to return the calculated sum.

5 Example Usage:

• sum_result = add_numbers(5, 3): Calls the add_numbers function with arguments 5 and 3 and assigns the
result to sum_result.

• print(“Sum:”, sum_result): Prints the result of the addition.

This function is well-documented using a docstring, making it clear how to use it and what it does. It follows best
practices for documenting functions in Python.

Output:

TASK 4: Python for loop with range function
Code:
Python Program to

show range() basics

printing a number

fori in range(10):

 print(i, end=” “)

#	performing	sum	of	first	10	numbers	

sum = 0

fori in range(1, 10):

 sum = sum + i

print(“\nSum	of	first	10	numbers	:”,	sum)

Explanation:
The Python range() function is used to generate a sequence of numbers. Depending on how many arguments the
user is passing to the function, the user can decide where that series of numbers will begin and end as well as
how	big	the	difference	will	be	between	one	number	and	the	next.range()	takes	mainly	three	arguments.	

• start: integer starting from which the sequence of integers is to be returned

• stop: integer before which the sequence of integers is to be returned.

The range of integers ends at a stop – 1.

• step: integer value which determines the increment between each integer in the sequence.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 127

© NIMI

NOT TO BE REPUBLISHED

254

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 128 : Write program in python using list, tuples,
 dictionaries and files

At the end of this exercise you shall be able to
• develop python program to use list, tuples, dictionaries and files.

Procedure
Python List:
In Python, a list is a versatile and commonly used data structure that allows you to store and manipulate a
collection of elements. Here’s a brief practical explanation of Python lists:

Creating Lists:
You can create a list by enclosing elements in square brackets []. Elements can be of any data type, and a list
can contain a mix of different types.

Accessing Elements:
You can access elements in a list using indexing. Python uses 0-based indexing, meaning the first element is at
index 0.

Slicing Lists:
You can extract a portion of a list using slicing. Slicing is done using the colon : operator.

List Methods:
Python provides several built-in methods for manipulating lists, such as append(), remove(), pop(), extend(), and
more.

Modifying Lists:
Lists are mutable, meaning you can change their elements.

© NIMI

NOT TO BE REPUBLISHED

255

COMPUTER SOFTWARE APPLICATION - CITS

Iterating Through Lists:
You can use loops to iterate through the elements of a list.

List Comprehensions:
Python supports concise ways to create lists using list comprehensions.

Nested Lists:
Lists can contain other lists, creating nested structures.

Here are five tasks demonstrating different aspects of Python lists:

TASK 1: Basic List Operations
Creating a list

fruits = [“Grapes”, “Banana”, “Orange”,]

Accessing elements

print(fruits[0]) # Output: Grapes

Modifying list

fruits.append(“Apple”) # Adding a new element

fruits[1] = “Kiwi” # Modifying an element

Iterating through the list

for fruit in fruits:

print(fruit)

Output:

CITS : IT & ITES - Computer Software Application - Exercise 128

© NIMI

NOT TO BE REPUBLISHED

256

COMPUTER SOFTWARE APPLICATION - CITS

TASK 2: List Slicing
Creating a list

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9]

print (“\n Slicing the list from 2:7: “)

Slicing the list

subset = numbers[2:7] # Output: [3, 4, 5, 6, 7]

foriin subset :

print (i, end=” “)

print (“\n Odd Number slicing from the list:”)

Step in slicing

even_numbers = numbers[1::2] # Output: [2, 4, 6, 8]

foriineven_numbers :

print (i, end=” “)

Output:

CITS : IT & ITES - Computer Software Application - Exercise 128

TASK 3: List Comprehension
Creating a list

original_numbers = [1, 2, 3, 4, 5]

Using list comprehension to create a new list

squared_numbers = [x**2for x inoriginal_numbers]

print(“Original Numbers:”, original_numbers)

print(“Squared Numbers:”, squared_numbers)

© NIMI

NOT TO BE REPUBLISHED

257

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 128

TASK 4: Nested Lists
Creating a nested list

matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Accessing elements in a nested list

print(matrix[1][2]) # Output: 6

Output:

TASK 5: List Method
Creating a list

my_list = [10, 20, 30, 40]

Using list methods

my_list.append(50) # Appending an element

my_list.remove(20) # Removing an element

popped_value = my_list.pop() # Popping and retrieving the last element

Displaying the modified list

print(“Modified List:”, my_list)

Output:

CITS : IT & ITES - Computer Software Application - Exercise 128

TASK 6: Maximum and Minimum
Creating a list of numbers

numbers = []

limit=int(input(“Enter the Limit: “))

foriin range(0,limit):

numbers.append(int(input(“Enter the Numbers: “)))

Output:

© NIMI

NOT TO BE REPUBLISHED

258

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 128

Finding maximum and minimum

max_num = max(numbers)

min_num = min(numbers)

print(“Maximum:”, max_num)

print(“Minimum:”, min_num)

Output:

TASK 7: List Concatenation
Creating two lists

list1 = []

list2 = []

limit=int(input(“Enter the Limit: “))

foriin range(0,limit):

list1.append(int(input(“Enter the Elemtes of List 1: “)))

foriin range(0,limit):

list2.append(int(input(“Enter the Elemtes of List 2: “)))

Concatenating lists

result_list = list1 + list2

print(“Concatenated List:”, result_list)

Output:

CITS : IT & ITES - Computer Software Application - Exercise 128

© NIMI

NOT TO BE REPUBLISHED

259

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 128

Related Exercises:
1 Write a Python program to create a list of integers and display its elements.

2 Create a list of strings and print the length of the list.

3. Write a program to concatenate two lists.

4 Implement a Python program to find the sum of elements in a numeric list.

5 Create a list of numbers and remove the duplicates.

6 Write a program to reverse a list.

7 Generate a list of squares of numbers from 1 to 10 using list comprehension.

8 Create a new list containing only even numbers from an existing list.

9 Implement a program to add two matrices using lists.

10 Write a Python script to find the transpose of a matrix.

11 Create a list of words and sort them in alphabetical order.

12 Write a program to sort a list of numbers in descending order.

13 Implement a program to extract a sub-list from a given list.

14 Write a Python script to reverse every alternate sublist of a list.

15 Create a program to check if a specific element exists in a list.

16 Write a Python function to find the index of the first occurrence of an element in a list.

17 Implement a Python program to flatten a nested list.

18 Write a script to find the sum of each row in a matrix represented as a list of lists.

19 Create a program to find the second-largest element in a list.

20 Implement a Python function to rotate a list by a given number of positions

CITS : IT & ITES - Computer Software Application - Exercise 128

Tuples
A tuple in Python is a collection of ordered, immutable elements. Tuples are similar to lists, but the key difference
is that tuples are immutable, meaning their elements cannot be changed or modified once the tuple is created.
Tuples are defined using parentheses ().

Creating a Tuple

Accessing Elements

© NIMI

NOT TO BE REPUBLISHED

260

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 128

Tuple Slicing

Tuple Concatenation

Tuple Unpacking

Tuples are often used when the order and immutability of elements are important. They are useful in scenarios
where you want to represent a fixed collection of items that should not be modified during the program execution.

TASK 1: Basic Tuple
Example 1: Creating a basic tuple

fruits = (‘apple’, ‘banana’, ‘orange’)

print(fruits)

Output: (‘apple’, ‘banana’, ‘orange’)

Explanation: In this example, a tuple named fruits is created with three elements. Tuples are defined using
parentheses.

Output:

TASK 2: Mixed Tupls
Example 2: Tuples with mixed data types

mixed_tuple = (1, ‘hello’, 3.14, True)

print(mixed_tuple)

Output: (1, ‘hello’, 3.14, True)

Output:

CITS : IT & ITES - Computer Software Application - Exercise 128

© NIMI

NOT TO BE REPUBLISHED

261

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 128

TASK 3: Nested tuple
Read a nested tuple from the keyboard

Input format: Enter a nested tuple as a string, e.g., (‘apple’, (1, 2, 3), [‘a’, ‘b’, ‘c’])

input_string = input(“Enter a nested tuple: “)

Convert the input string to a tuple

nested_tuple = eval(input_string)

Check if the entered value is a tuple

ifisinstance(nested_tuple, tuple):

 print(“Entered nested tuple:”, nested_tuple)

else:

 print(“Invalid input. Please enter a valid nested tuple.”)

Explanation:
• The program allows users to enter a nested tuple as a string.

• It then evaluates the string and converts it into a tuple.

• If the entered value is indeed a tuple, it is printed along with a confirmation message.

• If the input is not a tuple, an error message indicating invalid input is displayed.

Output:

TASK 4: Tuple Operations
Code:

#Tuple operations

tuple1 = (1, 2, 3)

tuple2 = (‘a’, ‘b’, ‘c’)

concatenated_tuple = tuple1 + tuple2

print(“Tuple1 is:”,tuple1)

print (“Tuple2 is:”,tuple2)

print(“concatenated_tuple is:”, concatenated_tuple)

Output: (1, 2, 3, ‘a’, ‘b’, ‘c’)

© NIMI

NOT TO BE REPUBLISHED

262

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 128

Explanation:

1 Tuple Initialization:
• tuple1 is initialized with the values (1, 2, 3).

• tuple2 is initialized with the values (‘a’, ‘b’, ‘c’).

2 Tuple Concatenation:
• concatenated_tuple is created by concatenating tuple1 and tuple2. The + operator concatenates the two

tuples.

3 Printing the Tuples:
• These lines print the original tuples (tuple1 and tuple2) and the result after concatenation (concatenated_tuple).

Output:

Related Exercises:
1 Python program to find tuples which have all elements divisible by K from a list of tuples

2 Python program to find Tuples with positive elements in List of tuples

3 Python – Count tuples occurrence in list of tuples

4 Python – Removing duplicates from tuple

5 Python program to sort a list of tuples alphabetically

Dictionaries in Python
Dictionaries in Python are versatile data structures that allow you to store and retrieve data using key-value pairs.
Here’s a brief explanation of dictionaries:

Overview:
• A dictionary is an unordered collection of items.

• Each item in a dictionary consists of a key-value pair.

• Keys must be unique within a dictionary.

• Values can be of any data type, and they can be duplicates.

Creating a Dictionary:

CITS : IT & ITES - Computer Software Application - Exercise 128

© NIMI

NOT TO BE REPUBLISHED

263

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 128

Accessing Values:

Modifying a Dictionary:

Adding New Key-Value Pairs:

Iterating Through a Dictionary:

Removing Key-Value Pairs:

Useful Methods:
• keys(): Returns a list of all keys.

• values(): Returns a list of all values.

• items(): Returns a list of key-value pairs as tuples.

TASK 1 : Basic Dictionary
Creating a basic dictionary

student = {

 ‘name’: ‘SreeHari’,

 ‘age’: 20,

© NIMI

NOT TO BE REPUBLISHED

264

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 128

 ‘grade’: ‘A’

}

Accessing dictionary elements

print(“Name:”, student[‘name’])

print(“Age:”, student[‘age’])

print(“Grade:”, student[‘grade’])

Explanation:
• A dictionary named student is created with keys (‘name’, ‘age’, ‘grade’) and corresponding values.

• Elements of the dictionary are accessed using keys, and their values are printed.

Output:

TASK 2: Dictionary Operations
student = {

 ‘name’: ‘SreeHari’,

 ‘age’: 20,

 ‘grade’: ‘A’

}

Modifying dictionary

student[‘age’] = 21

student[‘course’] = ‘Computer Science’

Deleting a key-value pair

if’grade’in student:

 del student[‘grade’]

Iterating through dictionary items

for key, value instudent.items():

 print(f”{key}: {value}”)

Explanation:
• The dictionary is modified by updating the ‘age’ and adding a new key ‘course’.

• A key-value pair (‘grade’) is deleted using the del keyword.

• A loop iterates through the dictionary items, printing each key-value pair.

Output :

CITS : IT & ITES - Computer Software Application - Exercise 128

© NIMI

NOT TO BE REPUBLISHED

265

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 128

TASK 3 : Nested Dictionary
Creating a nested dictionary

library = {

 ‘fiction’: {‘novels’: 50, ‘short stories’: 30},

 ‘non-fiction’: {‘history’: 20, ‘science’: 40}

}

Accessing nested dictionary elements

print(“Library Book Information”)

print(“-------------------------”)

print(“Number of novels:”, library[‘fiction’][‘novels’])

print(“Number of science books:”, library[‘non-fiction’][‘science’])

Explanation:
• The dictionary ‘library’ is nested with categories (‘fiction’, ‘non-fiction’) containing subcategories and their

counts.

• Nested elements are accessed using multiple keys.

Output:

TASK 4: Dictionary Methods
student = {

 ‘name’: ‘SreeHari’,

 ‘age’: 20,

 ‘grade’: ‘A’

}

Using dictionary methods

keys = student.keys()

values = student.values()

items = student.items()

print(“Keys:”, keys)

print(“Values:”, values)

print(“Items:”, items)

Explanation:
• The methods keys(), values(), and items() are used to retrieve keys, values, and key-value pairs, respectively.

Output:

© NIMI

NOT TO BE REPUBLISHED

266

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 128

TASK 5: Dictionary Comprehension
Dictionary comprehension

squared_numbers = {x: x**2for x inrange(1, 6)}

print(“Squared Numbers:”, squared_numbers)

Explanation:
• A dictionary is created using dictionary comprehension to store squared numbers from 1 to 5.

Output
Related Exercises:
1 Write a Python program to create an empty dictionary.

2 Create a dictionary with three key-value pairs representing student information (name, age, grade).

3 Access and print the value associated with the ‘age’ key in the student dictionary.

4 Modify the student dictionary to update the age to 22.

5 Add a new key-value pair to the student dictionary for the ‘course’ with the value ‘Computer Science’.

6 Remove the ‘grade’ key from the student dictionary if it exists.

7 Write a loop to iterate through the key-value pairs in the student dictionary and print them.

8 Use the keys(), values(), and items() methods to display the keys, values, and key-value pairs of the student
dictionary.

© NIMI

NOT TO BE REPUBLISHED

267

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 129 : Write a python program depicting argument
 passing and using tuples, dictionaries as
 arguments

At the end of this exercise you shall be able to
• develop python program to argument passing and using tuples, dictionaries as arguments.

Procedure
TASK 1: Using Tuple

defcalculate_average(*numbers):

 “””

 This function takes variable positional arguments (numbers) as a tuple

 and calculates their average.

 Args:

 *numbers: Variable positional arguments (packed into a tuple).

 Returns:

 float: Average of the numbers.

 “””

 ifnot numbers:

 return0 # Avoid division by zero

 average = sum(numbers) / len(numbers)

 return average

Example usage:

result = calculate_average(10,20,30,40,50)

num=(10,20,30,40,50)

print(“Numbers in Tuple are: “,num)

print(“Average:”, result)

Output:

© NIMI

NOT TO BE REPUBLISHED

268

COMPUTER SOFTWARE APPLICATION - CITS

TASK 2: Using Dictionary
defprint_book_info(**book_details):

 “””

 This function takes book details as keyword arguments packed into a dictionary.

 Args:

 **book_details: Book details (packed into a dictionary).

 “””

 print(“Book Information:”)

 for key, value inbook_details.items():

 print(f”{key.capitalize()}: {value}”)

Example usage:

print_book_info(title=”Wings of Fire “, author=”A. P. J. Abdul Kalam”, year=1999)

Explanation :
• The function print_book_info is defined to accept any number of keyword arguments. The double-asterisk **

before book_details allows the function to receive these keyword arguments and pack them into a dictionary
called book_details.

• Inside the function, it prints “Book Information:” to indicate that it’s displaying information about a book.

• It then iterates through the key-value pairs in the book_details dictionary using a for loop. For each key-value
pair, it prints the key (capitalized using capitalize()) and the corresponding value.

• The print_book_info function can handle different sets of book details, and the keys and values will be printed
in a readable format.

• In the example usage, the function is called with specific book details for “Wings of Fire” by A. P. J. Abdul
Kalam, published in 1999.

Output:

TASK 3: Using Tuple & Dictionaries
defprint_person_info(name, age, **additional_info):

 “””

 This function takes required positional arguments (name, age)

 and additional keyword arguments packed into a dictionary.

 Args:

 name (str): Person’s name.

 age (int): Person’s age.

CITS : IT & ITES - Computer Software Application - Exercise 129

© NIMI

NOT TO BE REPUBLISHED

269

COMPUTER SOFTWARE APPLICATION - CITS

 **additional_info: Additional information (packed into a dictionary).

 “””

 print(“Name:”, name)

 print(“Age:”, age)

 print(“Additional Information:”, additional_info)

Example usage:

print_person_info(“Alice”, 30, occupation=”Software Engineer”, city=”Wonderland”)

Explanations :
• The function print_person_info is defined to accept two required positional arguments (name and age) and any

number of additional keyword arguments. The double-asterisk ** before additional_info allows the function to
receive these additional keyword arguments and pack them into a dictionary called additional_info.

• Inside the function, it prints the name and age of the person using the provided positional arguments (name
and age).

• It then prints the additional information provided as keyword arguments, which are packed into the additional_
info dictionary.

• The print_person_info function can handle different sets of additional information for a person, and it will print
all the provided details.

• In the example usage, the function is called with the name “Alice”, age 30, and additional information about her
occupation and city.

Output:

Related Exercises:
1 Program 1: Tuple as Argument

• Write a Python program that defines a function to calculate the average of numbers passed as a tuple.

2 Program 2: Dictionary as Argument

• Create a program that defines a function to display the details of a person. The function should take a
dictionary with keys like ‘name’, ‘age’, and ‘city’ as arguments.

3 Program 3: Multiple Arguments and Default Values

• Write a program with a function that accepts multiple arguments, including a tuple and a dictionary. Set
default values for some parameters.

CITS : IT & ITES - Computer Software Application - Exercise 129

© NIMI

NOT TO BE REPUBLISHED

270

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 130 : Write a python program for importing a
 module

At the end of this exercise you shall be able to
• develop python program for importing a module.

Procedure
TASK 1: Module contains a utility function
Step1
• Create a module named utilities.py

• Save the following code in a file named utilities.py

• This module contains a utility function

 # File: utilities.py

 def multiply(a, b):

 return a * b

 # End of utilities.py

 Step 2:

 # Now, create a Python program to import and use the module

 # File: main_program.py

 # Import the module

 import utilities

 # Use the function from the imported module

 result = utilities.multiply(5, 3)

 # Display the result

 print(f”The result of multiplication is: {result}”)

 # End of main_program.py

Output:

In this example, utilities.py is a separate Python file containing a function multiply. The main_program file imports
this module and calls the multiply function to return the product of two numbers . Make sure both files (utilities.
pyandmain_program.py) are in the same directory or provide the correct path when importing the module.

© NIMI

NOT TO BE REPUBLISHED

271

COMPUTER SOFTWARE APPLICATION - CITS

TASK 2: Calculate the area of different shapes
 # File: geometry.py

 import math

 defcalculate_square_area(side):

 return side * side

 defcalculate_rectangle_area(length, width):

 return length * width

 defcalculate_circle_area(radius):

 returnmath.pi * radius * radius

 # File: geometry_program.py

 import geometry

 # Calculate areas using functions from the geometry module

 square_area = geometry.calculate_square_area(5)

 rectangle_area = geometry.calculate_rectangle_area(6, 4)

 circle_area = geometry.calculate_circle_area(3)

 # Print the calculated areas

 print(“Area of square:”, square_area)

 print(“Area of rectangle:”, rectangle_area)

 print(“Area of circle:”, circle_area)

Output:

TASK 3: Simple Arithmetic Operator
 Code:

 # my_module.py

 defadd(x, y):

 returnx+y

 defsubtract(x, y):

 returnx-y

 defmultiply(x, y):

 returnx*y

 defdivide(x, y):

 ify!=0:

 returnx/y

 else:

CITS : IT & ITES - Computer Software Application - Exercise 130

© NIMI

NOT TO BE REPUBLISHED

272

COMPUTER SOFTWARE APPLICATION - CITS

 return”Cannot divide by zero”

 # main_script.py

 importmy_module

 # Getting user input for numbers

 num1=float(input(“Enter the first number: “))

 num2=float(input(“Enter the second number: “))

 # Using arithmetic functions from my_module

 sum_result=my_module.add(num1, num2)

 difference_result=my_module.subtract(num1, num2)

 product_result=my_module.multiply(num1, num2)

 quotient_result=my_module.divide(num1, num2)

 # Displaying the results

 print(f”Sum: {sum_result}”)

 print(f”Difference: {difference_result}”)

 print(f”Product: {product_result}”)

 print(f”Quotient: {quotient_result}”)

 Output:

Related Exercises:
Exercise 1: Celsius to Fahrenheit Converter
Create a module temperature_converter.py with a function to convert Celsius to Fahrenheit and use it in a script.

Exercise 2: List Reverser
Create a module list_operations.py with a function to reverse a list and use it in a script.

Exercise 3: Palindrome Checker
Create a module palindrome_checker.py with a function to check if a given string is a palindrome and use it in a
script.

Exercise 4: Date Formatter
Create a module date_formatter.py with a function to format a given date and use it in a script.

Exercise 5: Word Counter
Create a module word_counter.py with a function to count the number of words in a given text and use it in a
script.

CITS : IT & ITES - Computer Software Application - Exercise 130

© NIMI

NOT TO BE REPUBLISHED

273

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 130

Objectives

EXERCISE 131 : Use exception handling in python program

At the end of this exercise you shall be able to
• develop python program for exception handling.

Procedure
Exception handling in Python is done using the try, except, else, and finally blocks. Here are five examples
demonstrating different use cases for exception handling

TASK 1: Division by Zero
Example 1: Division by Zero

try:

numerator=int(input(“Enter the numerator: “))

denominator=int(input(“Enter the denominator: “))

result=numerator/denominator

exceptZeroDivisionError:

print(“Error: Division by zero is not allowed.”)

else:

print(f”Result: {result}”)

finally:

print(“This block always executes, regardless of exceptions.”)

Explanation:
• We use try to enclose the code that might raise an exception.

• except Zero Division Error catches the specific exception if the denominator is zero.

• else block executes if there are no exceptions.

• finally block always executes, regardless of whether there is an exception or not.

Output:

© NIMI

NOT TO BE REPUBLISHED

274

COMPUTER SOFTWARE APPLICATION - CITS

TASK 2: Invalid Input
Code:
Example 2: Invalid Input

try:

number=int(input(“Enter an integer: “))

exceptValueError:

print(“Error: Invalid input. Please enter an integer.”)

else:

print(f”Entered number: {number}”)

finally:

print(“Input handling completed.”)

Explanation:
• Attempt to convert user input to an integer.

• exceptValueError catches the exception if the input is not a valid integer.

• else block executes if the input is a valid integer.

• finally block always executes.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 131

© NIMI

NOT TO BE REPUBLISHED

275

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 131

TASK 3: Custom Exception
Example 3: Custom Exception

classCustomError(Exception):

 pass

try:

user_input=input(“Enter ‘raise’ to simulate a custom exception: “)

ifuser_input.lower() ==’raise’:

raiseCustomError(“This is a custom exception.”)

exceptCustomErrorase:

print(f”CustomError caught: {e}”)

else:

print(“No exception raised.”)

finally:

print(“Exception handling completed.”)

Explanation:
• We define a custom exception CustomError.

• If the user enters ‘raise’, we deliberately raise the custom exception.

• exceptCustomError as e catches the custom exception and prints the error message.

• else block executes if no exception is raised.

• finally block always executes.

Output:

TASK 4: User Authentication
correct_username=”user123”

correct_password=”password123”

try:

username=input(“Enter your username: “)

password=input(“Enter your password: “)

CITS : IT & ITES - Computer Software Application - Exercise 131

© NIMI

NOT TO BE REPUBLISHED

276

COMPUTER SOFTWARE APPLICATION - CITS

ifusername!=correct_usernameorpassword!=correct_password:

raiseValueError(“Incorrect username or password.”)

exceptValueErrorase:

print(f”Authentication Error: {e}”)

else:

print(“Authentication successful.”)

Explanation:
• The program expects the user to input a username and password.

• If the entered credentials do not match the correct ones, a ValueError is raised.

• The except block catches this exception and prints an authentication error message.

• If no exception occurs, the else block executes, indicating successful authentication.

Output:

Related Exercises:
1 Write a program that tries to access an element at a specific index in a list. Handle the IndexError if the index

is out of range.

2 Create a program that concatenates two strings entered by the user. Handle the TypeError if the user enters
a non-string value

3 Write a program that asks the user to input their age. Raise a custom exception if the user enters a negative
value.

4 Create a dictionary and try to access a key that doesn’t exist. Handle the KeyError gracefully.

5 Write a program that uses assert to check whether a given number is positive. Handle the AssertionError if the
condition is not met.

CITS : IT & ITES - Computer Software Application - Exercise 131

© NIMI

NOT TO BE REPUBLISHED

277

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 132 : Write a python program to use built in
 functions i.e. chr, cmp, compile, dir,
 eval, filter, hash, input, len, locals, long,
 max, pow, range, slice, tuple, Unicode,
 vars

At the end of this exercise you shall be able to
• develop python programs to use built in functions i.e. chr, cmp, compile, dir, eval, filter, hash, input, len,

locals, long, max, pow, range, slice, tuple, Unicode, vars.

Procedure
TASK 1 : Write a program that takes an integer as input and uses the chr function to print the
 corresponding ASCII character
Code:
Exercise 1

num = int(input(“Enter an integer: “))

char = chr(num)

print(“Corresponding ASCII character:”, char)

Explanation:
1 The program starts by prompting the user to enter an integer using input.

2 The entered value is converted to an integer using int(num).

3 The chr function is then used to convert the integer to its corresponding ASCII character.

4 Finally, the result is printed, showing the ASCII character associated with the entered integer.

Output:

© NIMI

NOT TO BE REPUBLISHED

278

COMPUTER SOFTWARE APPLICATION - CITS

TASK 2: Write a program that takes a Python code snippet as input, compiles it using the compile
 function, and executes it using exec
Code:
Exercise 2: compile and exec

code = input(“Enter Python code snippet: “) # Prompt user for Python code

compiled_code = compile(code, ‘<string>’, ‘exec’) # Compile the code

exec(compiled_code) # Execute the compiled code

Explanation:
1 code = input(“Enter Python code snippet: “): This line prompts the user to enter a Python code snippet, and the

input is stored in the variable code.

2 compiled_code = compile(code, ‘<string>’, ‘exec’): The compile function is used to compile the entered code.
The first argument is the code itself, the second argument (‘<string>’) is a filename to represent the code (it
can be any string), and the third argument (‘exec’) specifies the compilation mode, which means the code will
be executed as a series of statements.

3 exec(compiled_code): The exec function is then used to execute the compiled code. This function is used to
dynamically execute Python code. The compiled code is passed as an argument to exec, and it is executed in
the current global and local scopes.

Output:

TASK 3: Write a program that uses the dir function to list all the attributes of a given object
Exercise 3: dir

obj = [1, 2, 3] # Example object (list)

attributes = dir(obj) # Use dir to get attributes of the object

print(“Object attributes:”, attributes) # Print the result

Explanation:
1 obj = [1, 2, 3]: This line creates an example object, in this case, a list [1, 2, 3].

2 attributes = dir(obj): The dir function is then used to get the attributes of the object obj. The dir function returns
a list of names in the namespace of the object. In this case, it will return a list of attributes and methods
available for the list object.

3 print(“Object attributes:”, attributes): Finally, the program prints the obtained attributes of the object. This helps
in exploring the available attributes and methods for a given object.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 132

© NIMI

NOT TO BE REPUBLISHED

279

COMPUTER SOFTWARE APPLICATION - CITS

TASK 4: Write a program that takes a mathematical expression as input from the user, evaluates it
 using the eval function, and prints the result
Code:
Exercise 4: eval and input

expression = input(“Enter a mathematical expression: “) # Prompt user for expression

result = eval(expression) # Evaluate the expression using eval

print(“Result:”, result) # Print the result

Explanation:
1 expression = input(“Enter a mathematical expression: “): This line prompts the user to enter a mathematical

expression. The entered expression is stored in the variable expression.

2 result = eval(expression): The eval function is then used to evaluate the mathematical expression stored in the
variable expression. eval interprets the expression as a Python expression and returns the result.

3 print(“Result:”, result): Finally, the program prints the result of the evaluated expression.

 So, this program demonstrates the use of the eval built-in function to dynamically evaluate a user-input
mathematical expression. Users can input any valid Python expression, and the program will output the result
of the evaluation.

Output :

TASK 5: Write a program that uses the filter function to extract even numbers from a list
Code:

Exercise 5: filter

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] # Example list

print(“Numbers: “,numbers)

even_numbers = list(filter(lambda x: x % 2 == 0, numbers)) # Use filter to get even numbers

print(“Even numbers:”, even_numbers) # Print the result

Explanation:
1 numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]: This line creates a list named numbers containing integer values from

1 to 10.

2 even_numbers = list(filter(lambda x: x % 2 == 0, numbers)): The filter function is used here to filter out even
numbers from the numbers list. The lambda function lambda x: x % 2 == 0 checks if a number is even (x % 2
== 0). The filter function returns an iterator containing only the elements from the numbers list for which the
lambda function returns True. list() is used to convert the iterator to a list.

3 print(“Even numbers:”, even_numbers): Finally, the program prints the list of even numbers extracted using the
filter function.

 So, this program demonstrates the use of the filter built-in function to selectively extract elements from a list
based on a specified condition.

CITS : IT & ITES - Computer Software Application - Exercise 132

© NIMI

NOT TO BE REPUBLISHED

280

COMPUTER SOFTWARE APPLICATION - CITS

Output:

TASK 6: Write a program that takes a string as input and prints its hashed value using the hash function
Code:
string_to_hash = “hello”

hashed_value = hash(string_to_hash)

print(f”Hashed value of ‘{string_to_hash}’: {hashed_value}”)

Explanation:
1 string_to_hash = “hello”: This line initializes a string variable string_to_hash with the value “hello”.

2 hashed_value = hash(string_to_hash): The hash() function is used to generate a hash value for the given
string. It converts the string into a hash value, which is an integer representation of the string’s content. The
resulting hash value is stored in the variable hashed_value.

3 print(f”Hashed value of ‘{string_to_hash}’: {hashed_value}”): This line prints the original string and its
corresponding hash value. The f in print(f””) denotes an f-string, allowing variables to be directly inserted into
the string. The output will show the original string and its associated hash value.

 In summary, this program demonstrates how to calculate the hash value of a string using the hash() function
in Python. The hash value is a numeric representation of the input string’s content.

Output:

TASK 7: Write a program that calculates and prints the length of a given string
Code:
7.len

str1=”Hello, World!”

string_length = len(str1)

print(f”Length of {str1} is: {string_length}”)

Explanation:
1 This exercise demonstrates the use of the len built-in function, which is used to determine the length of a

sequence or collection. In this case, the input is a string str1 (“Hello, World!”), and the len function is applied
to calculate the length of the string. The result is then printed to the console. The len function is versatile and
can be used with various iterable objects like strings, lists, tuples, etc.

CITS : IT & ITES - Computer Software Application - Exercise 132

© NIMI

NOT TO BE REPUBLISHED

281

COMPUTER SOFTWARE APPLICATION - CITS

Output:

TASK 8 : Write a program that uses the locals function to display all local variables in the program
Code:
8. locals

local_variables = locals()

print(f”Local variables: {local_variables}”)

Explanation:
1 The locals() function returns a dictionary containing the current local symbol table. In this example, locals()

is called without any arguments, and it returns a dictionary containing all the local variables and their
corresponding values within the current scope.

2 This can be particularly useful for debugging or inspecting the local variables within a function or code block.
However, it’s important to note that the result may vary depending on where locals() is called within the code.

Output:

TASK 9: Write a program that finds and prints the maximum value from a given list of numbers using
 the max function
Code:
9. max

numbers_to_find_max = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]

print(“List Elements are:”,numbers_to_find_max)

maximum_value = max(numbers_to_find_max)

print(f”Maximum value in the list: {maximum_value}”)

Explanation:
1 The max() function is used to find the maximum value from a sequence (in this case, a list). In this example,

the list numbers_to_find_max contains several numerical elements. The max() function is then applied to find
and print the maximum value from the list.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 132

© NIMI

NOT TO BE REPUBLISHED

282

COMPUTER SOFTWARE APPLICATION - CITS

TASK 10: Write a program to display Even Numbers using range() in Python
Code:
Example 10: Using range with start, stop, and step

start=int(input(“Enter the Start Value: “))

stop = int(input(“Enter the Stop Value: “))

step = int(input(“Enter the Step Value: “))

for num in range(start,stop,step):

print(num, end=’ ‘)

Explanation:
1 User Input: The program uses input to prompt the user to enter the start, stop, and step values. The int(...) is

used to convert the input to integers.

2 Range Function: The range(start, stop, step) function generates a sequence of numbers starting from start, up
to (but not including) stop, with a specified step between numbers.

3 For Loop: The for loop iterates over the generated sequence of numbers. For each number, it executes the
indented block of code.

4 Print Statement: Inside the loop, each number (num) is printed using the print function. The end=’ ‘ argument
ensures that the numbers are printed on the same line, separated by a space.

5 User Interaction: The user interaction allows for a dynamic experience where users can input their desired
range and step, and the program displays the sequence accordingly.

Output:

TASK 11: Write a program that takes two numbers (base and exponent) as input and calculates and
 prints the result of raising the base to the power of the exponent using the pow function
Code:
11. pow

base=int(input(“Enter the Base : “))

exponent = int(input(“Enter the Exponent : “))

power_result = pow(base, exponent)

print(f”{base} raised to the power of {exponent}: {power_result}”)

Explanation

1 User Input: The program prompts the user to enter the base and exponent values using input. The int(...)
converts the entered values to integers.

2 Pow Function: The pow(base, exponent) function is used to calculate the power of the base raised to the
specified exponent.

3 Result Display: The result of the power calculation is stored in the variable power_result and is then printed
using the print statement. The formatted string (f”...”) allows for a clear and concise display of the calculation.

CITS : IT & ITES - Computer Software Application - Exercise 132

© NIMI

NOT TO BE REPUBLISHED

283

COMPUTER SOFTWARE APPLICATION - CITS

Output:

TASK 12: Write a program that uses slicing to extract a substring from a given string
Code:
12. slice

text = input(“Enter the String: “)

print(“Given String is “, text)

sliced_text = text[6:11]

print(f”Sliced text: {sliced_text}”)

Explanation:
1 User Input: The program prompts the user to enter a string using input. The entered string is stored in the

variable text.

2 Original Text Display: The program prints the original string using print(“Given String is “, text).

3 Slicing: The program uses slicing (text[6:11]) to extract a portion of the string. In Python, slicing is used to
create a new sequence (in this case, a substring) by specifying a range of indices.

4 Result Display: The sliced text is stored in the variable sliced_text and is then printed using the print statement.
The formatted string (f”...”) allows for a clear display of the original and sliced text.

 This example demonstrates how to use slicing to extract a substring from a user-entered string. The specific
range [6:11] extracts characters from the 7th to the 10th positions (Python uses 0-based indexing). Users can
input different strings, and the program will display the sliced portion.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 132

TASK 13: Write a program that converts a list into a tuple using the tuple function
Code :
13. tuple

example_list = [1, 2, 3, 4, 5]

print(“ Given List is : “, example_list)

tuple_from_list = tuple(example_list)

print(f”Tuple from list: {tuple_from_list}”)

© NIMI

NOT TO BE REPUBLISHED

284

COMPUTER SOFTWARE APPLICATION - CITS

Explanation:
1 List to Tuple Conversion: The program creates a list example_list containing integers.

2 Tuple Creation: The tuple() function is used to convert the list into a tuple. The resulting tuple is assigned to
the variable tuple_from_list.

3 Display: The program prints the tuple obtained from the list using the print statement. The formatted string
(f”...”) is used to include the tuple in the output.

Output:

TASK 14 : Write a program that uses the vars function to display all variables in the program as
 a dictionary
Code:
14. vars

name = “John”

age = 25

country = “USA”

info_dict = vars()

print(f”Variables as dictionary: {info_dict}”)

Explanation:
1 Variable Information: The program defines three variables: name, age, and country.

2 vars() Function: The vars() function is used to obtain a dictionary representing the current local symbol table.
This includes all variables currently defined.

3 Display: The program prints the dictionary obtained from the local variables using the print statement. The
formatted string (f”...”) is used to include the dictionary in the output.

 These examples showcase how to convert a list to a tuple and how to obtain variable information as a dictionary
using the vars() function. The output will display the converted tuple and the dictionary of local variables.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 132

© NIMI

NOT TO BE REPUBLISHED

285

COMPUTER SOFTWARE APPLICATION - CITS

Related Exercises
1 Write a program that takes an ASCII code as input and prints the corresponding character using the chr()

function.

2 Write a program that compares two integers and prints whether they are equal, greater, or smaller using the
cmp() function.

3 Create a program that takes a Python code snippet as input, compiles it using the compile() function, and then
executes it using exec().

4 Write a program that defines a list and uses the dir() function to get its attributes. Print the list of attributes.

5 Develop a program that prompts the user for a mathematical expression, evaluates it using eval(), and prints
the result.

6 Create a program that defines a list of numbers and uses the filter() function to obtain only the even numbers.

7 Write a program that takes a string as input, computes its hash using the hash() function, and prints the result.

8 Develop a program that uses the input() function to get the user’s name and then prints a personalized
greeting.

9 Create a program that takes a string as input and prints its length using the len() function.

10 Write a program that defines some local variables, uses the locals() function to obtain their dictionary, and
prints the result.

11 Develop a program that defines a list of numbers, uses the max() function to find the maximum value, and
prints the result.

12 Create a program that takes base and exponent values as input, calculates the power using pow(), and prints
the result.

13 Write a program that takes a string as input, uses slicing to extract a substring, and prints the result.

14 Develop a program that defines a list and converts it into a tuple using the tuple() function. Print the resulting
tuple.

15 Write a program that defines some variables, uses the vars() function to obtain their dictionary, and prints the
result.

CITS : IT & ITES - Computer Software Application - Exercise 132

© NIMI

NOT TO BE REPUBLISHED

286

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 133 : Write a python program to read and write
 into a file

At the end of this exercise you shall be able to
• develop python programs to read and write into a file.

Procedure
In Python, file handling is an essential part of programming that allows you to work with files on your computer.
You can read from existing files, write to new files, and perform various operations on files. Here’s a brief overview
of Python file handling:

Opening a File: To open a file, you can use the built-in open() function. It takes two parameters – the file name
and the mode (read, write, or append).

Common modes:
• “r”: Read (default mode).

• “w”: Write (creates a new file or truncates an existing file).

• “a”: Append (opens a file for appending new content).

Reading from a File: You can read the content of a file using various methods such as read(), readline(), or
readlines().

Writing to a File: To write content to a file, open the file in write mode (“w”) or append mode (“a”) and use the
write() method.

Closing a File: It’s important to close the file after you’re done with it. The with statement automatically closes
the file when the block is exited.

© NIMI

NOT TO BE REPUBLISHED

287

COMPUTER SOFTWARE APPLICATION - CITS

TASK 1: Program code for read mode
 It is a read operation in Python. We open an existing file with the given code and then read it. The code

is given below –

 # Open the file in read mode

 with open(“file.txt”, “r”) as fileptr:

 # Read the contents of the file

 file_content = fileptr.read()

 # Print the content

 print(file_content)

Explanation:
with open(“file.txt”, “r”) as fileptr:
• with: The with statement is used to wrap the execution of a block with methods defined by a context manager.

It ensures that the file is properly closed after the block execution, even if an exception occurs.

• open(“file.txt”, “r”): The open function is used to open a file. The first argument is the filename (“file.txt” in this
case), and the second argument is the mode (“r” for read mode).

• as fileptr: It assigns the file object returned by open to the variable fileptr. This variable is used to interact with
the file.

file_content = fileptr.read():
• fileptr.read(): The read method is called on the file object (fileptr). It reads the entire content of the file and

returns it as a string, which is then assigned to the variable file_content.

print(file_content):
• print(file_content): This line prints the contents of the file, which were stored in the file_content variable.

• The use of the with statement is good practice because it automatically takes care of closing the file when the
indented block is exited, ensuring proper resource management.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 133

TASK 2: Open the file in write mode
Open the file in write mode

with open(“file.txt”, “w”) as fileptr:

Write content to the file

fileptr.write(“Hello, this is a sample line.\n”)

fileptr.write(“Writing another line to the file.\n”)

print(“Content has been written to the file.”)

Explanation:
1 with open(“file.txt”, “w”) as fileptr::
• This line opens the file named “file.txt” in write mode (“w”).

• The with statement ensures that the file is properly closed after writing.

© NIMI

NOT TO BE REPUBLISHED

288

COMPUTER SOFTWARE APPLICATION - CITS

2 File Write:
• fileptr.write(“Hello, this is a sample line.\n”): Writes the first line to the file.

• fileptr.write(“Writing another line to the file.\n”): Writes the second line to the file.

• The “\n” is used to add a newline character at the end of each line.

3 print(“Content has been written to the file.”):
• This line is not necessary for file writing but serves as a confirmation message that the content has been

written.

 After running this code, you should find a file named “file.txt” in the same directory with the specified lines
written to it.

Output;

To see the content of the file named file.txt use the following command in the Command Prompt/Terminal.

F:\Python> Type file.txt
You will get the output like this

TASK 3 : Python program that demonstrates file manipulation, including reading, writing, and appending
 to a file
Code:
Step 1: Open a file for writing

with open(“sample_file.txt”, “w”) as fileptr:

Step 2: Write content to the file

fileptr.write(“Hello, this is a sample line.\n”)

fileptr.write(“Writing another line to the file.\n”)

Step 3: Open the same file for reading

with open(“sample_file.txt”, “r”) as fileptr:

Step 4: Read and print the file content

file_content = fileptr.read()

print(“File Content (Read Mode):\n”, file_content)

Step 5: Open the same file for appending

with open(“sample_file.txt”, “a”) as fileptr:

Step 6: Append more content to the file

fileptr.write(“Appending a new line to the file.\n”)

Step 7: Open the file again for reading

CITS : IT & ITES - Computer Software Application - Exercise 133

© NIMI

NOT TO BE REPUBLISHED

289

COMPUTER SOFTWARE APPLICATION - CITS

with open(“sample_file.txt”, “r”) as fileptr:

Step 8: Read and print the updated file content

updated_content = fileptr.read()

print(“\nUpdated File Content (Read Mode):\n”, updated_content)

Explanation:

1 Opening File for Writing (“w”):
• with open(“sample_file.txt”, “w”) as fileptr: opens the file “sample_file.txt” in write mode.

• write method is used to write content to the file.

2 Reading File Content (“r”):
• with open(“sample_file.txt”, “r”) as fileptr: opens the file in read mode to read its content.

• read method is used to read and print the file content.

3 Appending to the File (“a”):
• with open(“sample_file.txt”, “a”) as fileptr: opens the file in append mode.

• write method is used to append content to the file.

4 Reading Updated File Content (“r”):
• with open(“sample_file.txt”, “r”) as fileptr: opens the file again in read mode.

• read method is used to read and print the updated file content.

 After running this code, you should see the content of “sample_file.txt” displayed, including the appended line.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 133

Related Exercises:
1 File Reading:

• Write a Python program to read the contents of a file and display them.

• Modify the program to read only the first N lines of the file.

2 File Writing:
• Create a Python program to write a list of strings to a file.

• Allow the user to input multiple lines of text and save them to a file.

3 Appending to a File:
• Write a program to append new data to an existing file.

• Allow the user to input additional lines and append them to the file.

© NIMI

NOT TO BE REPUBLISHED

290

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 134 : Write a python program depicting
 argument passing and using tuples,
 dictionaries as arguments

At the end of this exercise you shall be able to
• develop python programs depicting argument passing and using tuples, dictionaries as arguments.

Procedure
TASK 1: Argument Passing with Tuples
Code:
def display_info(*args):

for arg in args:

print(arg)

Example usage

display_info(“John”, 25, “USA”, “Software Engineer”)

Explanation:
• The function display_info accepts variable-length positional arguments using *args.

• It prints each argument passed to the function.

Output:

TASK 2: Argument Passing with Dictionaries
Code:
def display_user_info(**kwargs):

for key, value in kwargs.items():

print(f”{key}: {value}”)

Example usage

display_user_info(name=”Alice”, age=30, occupation=”Data Scientist”, country=”Canada”)

Explanation:
• The function display_user_info accepts variable-length keyword arguments using **kwargs.

• It prints each key-value pair passed to the function.

Output:

© NIMI

NOT TO BE REPUBLISHED

291

COMPUTER SOFTWARE APPLICATION - CITS

TASK 3: Combined Use of Tuples and Dictionaries
Code:
def display_person_info(name, age, **additional_info):

print(“Name:”, name)

print(“Age:”, age)

for key, value in additional_info.items():

print(f”{key}: {value}”)

Example usage

display_person_info(“Bob”, 28, occupation=”Software Developer”, city=”New York”)

Explanation:
• The function display_person_info has both positional and keyword arguments.

• It prints the name and age as positional arguments and any additional information as keyword arguments.

 These examples showcase different ways to use tuples and dictionaries for argument passing in Python
functions.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 134

Related Exercises:
Exercise 1: Tuples
1 Write a Python function that takes a tuple of numbers as input and returns their sum.

2 Create a program that prompts the user to enter values and stores them in a tuple. Display the tuple.

Exercise 2: Dictionaries
1 Implement a function that accepts a dictionary of student names and their corresponding grades. Print each

student’s name and grade.

2 Write a program to input key-value pairs from the user and store them in a dictionary. Display the dictionary.

Exercise 3: Combined Use
1 Define a function that takes a person’s name and age as positional arguments and any additional information

as keyword arguments. Display the name, age, and additional information.

2 Create a program that reads information about books (title, author, year) from the user and stores it in a
dictionary. Display the dictionary.

© NIMI

NOT TO BE REPUBLISHED

292

COMPUTER SOFTWARE APPLICATION - CITS

v

Objectives

EXERCISE 135 : Construct and analyze code segments
 that include List comprehensions,
 tuple, set and Dictionary comprehensions

At the end of this exercise you shall be able to
• develop python programs to Construct and analyze code segments that include List comprehensions,

tuple, set and Dictionary comprehensions

Procedure
Comprehensions in Python provide a concise way to create and manipulate sequences (lists, sets, dictionaries,
etc.) based on existing sequences. There are mainly three types of comprehensions: list comprehensions, set
comprehensions, and dictionary comprehensions.

1 List Comprehensions:
 List comprehensions allow you to create new lists by applying an expression to each item in an existing

iterable (list, tuple, string, etc.). They are a concise alternative to using loops.

 Syntax:
 new_list = [expression for item in iterable if condition]

TASK 1: Squares of Numbers
Code:
squares = [x**2 for x in range(1, 6)]

print(“Squares of numbers:”, squares)

Explanation:
This list comprehension creates a list of squares of numbers from 1 to 5.

Output:

TASK 2: Even Numbers
Code:
even_numbers = [x for x in range(10) if x % 2 == 0]

print(“Even numbers:”, even_numbers)

Explanation:
Explanation: This list comprehension generates a list of even numbers between 0 and 9.

Output:

© NIMI

NOT TO BE REPUBLISHED

293

COMPUTER SOFTWARE APPLICATION - CITS

Tuple Comprehensions:
1 Tuple comprehensions are similar to list comprehensions but create tuples instead. The syntax is the same as

for list comprehensions.

TASK 3: Squares of Numbers
Code:
tuple_of_squares = tuple(x**2 for x in range(1, 6))

print(“Tuple of squares:”, tuple_of_squares)

Explanation: This tuple comprehension creates a tuple of squares of numbers from 1 to 5.

Output :

TASK 4: Squares of even numbers from 1 to 10
Code:
Generating a tuple of squares of even numbers from 1 to 10

even_squares = (x**2 for x in range(1, 11) if x % 2 == 0)

Iterating over the tuple of even squares

for square in even_squares:

 print(square)

Explanation :
• In this example, the generator expression (x**2 for x in range(1, 11) if x % 2 == 0) generates a tuple of squares

of even numbers from 1 to 10.

• When you need to iterate over the items of the tuple, you can use a for loop or convert the generator expression
into a tuple using the tuple() function:

• This approach is memory-efficient because it doesn’t create the entire tuple in memory at once. Instead, it
generates the items on-the-fly as needed.

• While tuple comprehensions don’t exist explicitly in Python, you can achieve similar functionality using
generator expressions to produce tuples.

CITS : IT & ITES - Computer Software Application - Exercise 135

© NIMI

NOT TO BE REPUBLISHED

294

COMPUTER SOFTWARE APPLICATION - CITS

Set Comprehensions:
 A set is an unordered and mutable collection of unique elements. It is defined using curly braces {}. Sets
are widely used when the presence of unique elements is crucial, and the order of elements doesn’t matter.

 Set comprehensions are similar to list comprehensions but create sets instead. They use curly braces {}.

 Syntax:
 new_set = {expression for item in iterable if condition}

TASK 5: Cube of numbers from 1 to 5
Code:
set_of_cubes = {x**3 for x in range(1, 6)}

 print(“Set of cubes:”, set_of_cubes)

Explanation:
• range(1, 6) generates numbers from 1 to 5 (inclusive).

• x**3 computes the cube of each number in the range.

• The set comprehension {x**3 for x in range(1, 6)} collects these cube values into a set.

 After executing the code, the set set_of_cubes will contain the cubes of numbers 1 through 5. The output will
look like:

TASK 6: Set Comprehension with Conversion
Code:
Create a set of uppercase characters in a string

text = “hello World”

print(“Given Text is : “,text)

uppercase_set = {char.upper() for char in text if char.isalpha()}

print(“Set of uppercase characters:”, uppercase_set)

Explanation:
1 text = “hello World”: Initializes a string variable named text with the value “hello World”.

2 print(“Given Text is : “, text): Prints the original text.

3 uppercase_set = {char.upper() for char in text if char.isalpha()}:

• This is a set comprehension.

• for char in text: Iterates over each character in the text.

• if char.isalpha(): Filters out non-alphabetic characters.

• char.upper(): Converts each character to uppercase.

• The result is a set containing the uppercase alphabetic characters from the original text.

4 print(“Set of uppercase characters:”, uppercase_set): Prints the set of uppercase characters obtained from the
text.

CITS : IT & ITES - Computer Software Application - Exercise 135

© NIMI

NOT TO BE REPUBLISHED

295

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 135

 So, the complete code takes a string, filters out non-alphabetic characters, converts the remaining characters
to uppercase, and creates a set of those uppercase characters. The output displays the original text and the
resulting set of uppercase characters.

Output:

5 Dictionary Comprehensions:
 Dictionary comprehensions allow you to create dictionaries. They use key-value pair expressions.

TASK 7: Original list of fruits and their lengths
Original list of fruits and their lengths

fruits = [‘apple’, ‘banana’, ‘orange’, ‘kiwi’, ‘grape’]

fruit_lengths = {fruit: len(fruit) for fruit in fruits}

Print the original list

print(“Original List of Fruits:”, fruits)

Print the dictionary created using a comprehension

print(“Dictionary of Fruit Lengths:”, fruit_lengths)

Explanation:
1 fruits = [‘apple’, ‘banana’, ‘orange’, ‘kiwi’, ‘grape’]: Initializes a list of fruits.

2 fruit_lengths = {fruit: len(fruit) for fruit in fruits}:

• This is a dictionary comprehension.

• for fruit in fruits: Iterates over each fruit in the list.

• {fruit: len(fruit)}: Creates a key-value pair in the dictionary, where the key is the fruit, and the value is the
length of the fruit.

3 print(“Original List of Fruits:”, fruits): Prints the original list of fruits.

4 print(“Dictionary of Fruit Lengths:”, fruit_lengths): Prints the dictionary created using the comprehension.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 135

TASK 8: Temperatures in Celsius
Original list of temperatures in Celsius

temperatures_celsius = {‘city1’: 25, ‘city2’: 30, ‘city3’: 22, ‘city4’: 18}

Dictionary comprehension to convert temperatures to Fahrenheit

temperatures_fahrenheit = {city: (temp * 9/5) + 32 for city, temp in temperatures_celsius.items()}

Print the original temperatures

print(“Original Temperatures (Celsius):”, temperatures_celsius)

© NIMI

NOT TO BE REPUBLISHED

296

COMPUTER SOFTWARE APPLICATION - CITS

Print the converted temperatures

print(“Temperatures (Fahrenheit):”, temperatures_fahrenheit)

Explanation:
1 Temperatures_celsius = {‘city1’: 25, ‘city2’: 30, ‘city3’: 22, ‘city4’: 18}: Initializes a dictionary with city names as

keys and temperatures in Celsius as values.

2. Temperatures_fahrenheit = {city: (temp * 9/5) + 32 for city, temp in temperatures_celsius.items()}:

• This is a dictionary comprehension.

• For city, temp in temperatures_celsius.items(): Iterates over each city and temperature in the original dictionary.

• {city: (temp * 9/5) + 32}: Creates a new key-value pair in the dictionary, where the key is the city, and the value
is the temperature converted to Fahrenheit.

3 Print(“Original Temperatures (Celsius):”, temperatures_celsius): Prints the original temperatures in Celsius.

4 Print(“Temperatures (Fahrenheit):”, temperatures_fahrenheit): Prints the dictionary of temperatures converted
to Fahrenheit.

Output:

Related Exercises :
List Comprehensions:
1 Create a list comprehension that generates the squares of numbers from 1 to 10.

2 Generate a list of even numbers from 1 to 20 using list comprehension.

3 Given a list of strings, create a new list containing the lengths of each string.

Tuple Comprehensions:
1 Generate a tuple comprehension that contains cubes of numbers from 1 to 5.

2 Create a tuple of characters at odd indices from a given string.

Set Comprehensions:
1 Generate a set comprehension that contains unique squares of numbers from 1 to 10.

2 Create a set of vowels present in a given string.

Dictionary Comprehensions:
1 Given two lists, create a dictionary where elements from the first list are keys, and elements from the second

list are values.

2 Count the frequency of each character in a string and create a dictionary using dictionary comprehension.

3 Given a dictionary containing temperatures in Celsius, create a new dictionary with temperatures converted to
Fahrenheit.

CITS : IT & ITES - Computer Software Application - Exercise 135

© NIMI

NOT TO BE REPUBLISHED

297

COMPUTER SOFTWARE APPLICATION - CITS

Objectives

EXERCISE 136 : Perform basic operations using built-in
 modules

At the end of this exercise you shall be able to
• develop python programs to Perform basic operations using built-in modules.

Procedure
TASK 1: Math Module
Code:
import math

Example 1: Square Root

number = 25

square_root = math.sqrt(number)

print(f”Square root of {number}: {square_root}”)

Example 2: Power

base = 2

exponent = 3

power_result = math.pow(base, exponent)

print(f”{base} raised to the power of {exponent}: {power_result}”)

Explanation:

• This line imports the math module, which provides access to various mathematical functions and constants in
Python.

• In this section, the code calculates the square root of the number 25 using the sqrt() function from the math
module. The result is stored in the variable square_root, and then it is printed out with an f-string.

• Here, the code calculates 2 raised to the power of 3 using the pow() function from the math module. The result
is stored in the variable power_result, and then it is printed out with an f-string.

 In summary, the code demonstrates how to use the sqrt() function to calculate square roots and the pow()
function to calculate powers with the help of the math module.

© NIMI

NOT TO BE REPUBLISHED

298

COMPUTER SOFTWARE APPLICATION - CITS

Output:

TASK 2: Calendar Module
import calendar

Example 6: Display Calendar

year = int(input(“Enter the Year: “))

month = int(input(“Enter the Month: “))

cal = calendar.month(year, month)

print(f”Calendar for {calendar.month_name[month]} {year}:\n{cal}”)

1 Importing the calendar module:

• This line imports the built-in calendar module, which provides functions to work with calendars.

2 Getting User Input for Year and Month:

• These lines prompt the user to enter the year and month for which they want to display the calendar.

• The input function takes user input as a string, and int is used to convert it to integers.

3 Generating Calendar:

• This line uses the month function from the calendar module to generate a formatted calendar as a string
for the specified year and month.

• The result is stored in the variable cal

4 Printing the Calendar:

CITS : IT & ITES - Computer Software Application - Exercise 136

• This line prints the formatted calendar.

• The f-string includes the name of the entered month and the entered year for clarity.

• The calendar.month_name[month] is used to get the name of the month based on the entered numeric value.

• The formatted calendar string (cal) is printed.

 In summary, the code takes user input for the year and month, uses the calendar module to generate a
formatted calendar, and prints the calendar with additional information for better readability.

© NIMI

NOT TO BE REPUBLISHED

299

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 136

Output:

TASK 3: Datetime Module
Code:
from datetime import datetime, timedelta

Example of working with dates and times

current_time = datetime.now() # Get current date and time

formatted_time = current_time.strftime(“%Y-%m-%d %H:%M:%S”) # Format the time as a string

Example of adding and subtracting time

one_day_later = current_time + timedelta(days=1)

two_hours_earlier = current_time - timedelta(hours=2)

print(formatted_time)

print(one_day_later.strftime(“%Y-%m-%d %H:%M:%S”))

print(two_hours_earlier.strftime(“%Y-%m-%d %H:%M:%S”))

• This line imports the datetime class and the timedelta class from the datetime module. the datetime class is
used to represent dates and times, and the timedelta class is used to represent the difference between two
dates or times.

CITS : IT & ITES - Computer Software Application - Exercise 136

• This line creates a datetime object representing the current date and time.

• The strftime method is used to format the datetime object as a string according to the specified format. In this
case, it formats the date and time in the “Year-Month-Day Hour:Minute:Second” format.

© NIMI

NOT TO BE REPUBLISHED

300

COMPUTER SOFTWARE APPLICATION - CITS

• This line creates a new datetime object representing a date and time one day later than the current time.

• This line creates a new datetime object representing a date and time two hours earlier than the current time

• Finally, the code prints out the formatted current time, the time one day later, and the time two hours earlier.

 In summary, the code demonstrates working with dates and times, formatting them as strings, and performing
basic arithmetic operations on them using the datetime and timedelta classes.

Output:

Related Exercises:
1 Write a program that calculates the area of a circle given its radius using the math module.

2 Write a program that displays the current date and time using the datetime module.

3 Write a program that displays the calendar using the calendar module.

CITS : IT & ITES - Computer Software Application - Exercise 136

© NIMI

NOT TO BE REPUBLISHED

301

COMPUTER SOFTWARE APPLICATION - CITS

CITS : IT & ITES - Computer Software Application - Exercise 136

Objectives

EXERCISE 137 : Solve complex computing problems by
 using builtin modules

At the end of this exercise you shall be able to
• develop python programs to Solve complex computing problems by using builtin modules.

Procedure
TASK 1: Finding the Square Root with the math Module
Code:
import math

number = float(input(“Enter a number: “))

square_root = math.sqrt(number)

print(f”The square root of {number} is {square_root}”)

Explanation:

1 Importing the math Module:
• import math: This line imports the math module, which provides access to various mathematical functions and

constants.

2 Getting User Input:
• number = float(input(“Enter a number: “)): This line prompts the user to enter a number. The input is captured

as a string using the input() function and then converted to a floating-point number using float().

3 Calculating the Square Root:
• square_root = math.sqrt(number): This line calculates the square root of the input number using the sqrt()

function from the math module.

4. Displaying the Result:
• print(f”The square root of {number} is {square_root}”): This line prints the calculated square root using an

f-string. It displays the original number entered by the user along with its square root.

Output:

TASK 2: Calculating Trigonometric Functions with the math Module
Code:
import math

angle = float(input(“Enter an angle in degrees: “))

sin_value = math.sin(math.radians(angle))

cos_value = math.cos(math.radians(angle))

© NIMI

NOT TO BE REPUBLISHED

302

COMPUTER SOFTWARE APPLICATION - CITS

print(f”The sin of {angle} degrees is {sin_value}”)

print(f”The cos of {angle} degrees is {cos_value}”)

Explanation:
1 Importing the math Module:
• import math: This line imports the math module, which provides mathematical functions and constants.

2 Getting User Input:
• angle = float(input(“Enter an angle in degrees: “)): This line prompts the user to enter an angle in degrees,

captures the input as a string, and converts it to a floating-point number using float().

3 Calculating Sine and Cosine:
• sin_value = math.sin(math.radians(angle)): This line calculates the sine of the angle. The math.radians()

function converts the angle from degrees to radians before applying the math.sin() function.

• cos_value = math.cos(math.radians(angle)): This line calculates the cosine of the angle in a similar way.

4 Displaying the Results:
• print(f”The sin of {angle} degrees is {sin_value}”): This line prints the calculated sine value for the entered

angle.

• print(f”The cos of {angle} degrees is {cos_value}”): This line prints the calculated cosine value for the entered
angle.

Output:

TASK 3: Generating Random Numbers with the random Module
Code:
import random

random_number = random.randint(1, 100) # Generate a random integer between 1 and 100

print(f”Random number: {random_number}”)

Explanation:
1 Importing the random Module:

• import random: This line imports the random module, which provides functions for generating pseudo-random
numbers.

2 Generating a Random Integer:
• random_number = random.randint(1, 100): This line generates a random integer between 1 and 100 (inclusive)

using the randint() function from the random module. The result is stored in the variable random_number.

3 Displaying the Result:
• print(f”Random number: {random_number}”): This line prints the generated random number to the console

using an f-string.

CITS : IT & ITES - Computer Software Application - Exercise 137 CITS : IT & ITES - Computer Software Application - Exercise 137

© NIMI

NOT TO BE REPUBLISHED

303

COMPUTER SOFTWARE APPLICATION - CITS

TASK 4: Manipulating Dates and Times with the datetime Module
Code:
from datetime import datetime, timedelta

current_time = datetime.now()

one_week_later = current_time + timedelta(weeks=1)

print(f”Current time: {current_time}”)

print(f”One week later: {one_week_later}”)

Explanation:
1 Importing the datetime Module:
• from datetime import datetime, timedelta: This line imports the datetime module, which provides classes for

working with dates and times, and the timedelta class, which represents the difference between two dates or
times.

2 Getting the Current Time:
• current_time = datetime.now(): This line gets the current date and time and assigns it to the variable current_

time using the now() method of the datetime class.

3 Calculating One Week Later:
• one_week_later = current_time + timedelta(weeks=1): This line adds one week (7 days) to the current time

using the timedelta class. The result is stored in the variable one_week_later.

4 Displaying the Results:
• print(f”Current time: {current_time}”): This line prints the current time to the console using an f-string.

• print(f”One week later: {one_week_later}”): This line prints the calculated time one week later to the console
using an f-string.

Output:

CITS : IT & ITES - Computer Software Application - Exercise 137

Related Exercises
1 Write a Python program that generates and prints a random number between 1 and 50 using the random

module

2 Create a program that takes user input for a temperature in Celsius and converts it to Fahrenheit using the
appropriate formula. Utilize the math module for mathematical operations.

3 Develop a program that prompts the user to enter a specific date and then calculates and displays the date
and time exactly one month later using the datetime module.

4 Build a Python program that takes an angle in degrees as input and calculates and prints the sine, cosine, and
tangent values using functions from the math module.

5 Write a program that creates a new text file and writes the current date and time (timestamp) to it. Utilize the
datetime module for timestamp generation.

Output:

© NIMI

NOT TO BE REPUBLISHED

	Content - New
	Module 6 - Part 1
	Module 6 - Part 2
	Module 6 - Part 3
	Module 6 - Part 4
	Module 6 - Part 5
	Module 6 - Part 6
	Module 6 - Part 7
	Module 7 - Part 1
	Module 7 - Part 2

