Page 31 - CITS - Electronic Mechanic - TT - 2024
P. 31

ELECTRONICS MECHANIC - CITS




           Laws of boolean algebra:
           Complementation Laws
           The term complements imply means to invert,i.e. to change 0’s to1’s and 1’s to 0’s.
           Law 1:0’=1
           Law 2: 1’=0
           Commutative Laws:

           Commutative laws allow change in position of AND or OR variables.
           Law1:A+ B=B+ A
           Proof:
           This law can be extended to any numbers of variables fo re.g.

           A+B +C= B+A+C= C+B+A=C+A+B
















           This law can be extended to any numbers of variables for e.g.
           A·B· C=B · A·C= C·B·A= C·A·B
           Associative Laws
           The associative laws allow grouping of variables.
           Law1: (A+ B)+ C=A+ (B+ C)
           Proof:
           This law can be extended to any no.of variables for e.g.
           A+(B+ C+D) = (A+B +C) + D= (A+ B)+(C+D)


















           This law can be extended to any no.of variables for e.g.
           A·(B· C · D) =(A·B ·C)·D= (A·B) ·(C·D)
           Distributive Laws
           The distributive laws allow factoring or multiplying out of expressions.

           Law1:A (B+ C)= AB +AC
           Proof:


                                                           16

                                     CITS : E & H - Electronics Mechanic - Lesson 5 - 8
   26   27   28   29   30   31   32   33   34   35   36