Page 33 - CITS - Electronic Mechanic - TT - 2024
P. 33

ELECTRONICS MECHANIC - CITS




           A’C+ BC =

           AB + A’C Proof: L.H.S.=AB+ A’C +BC
           =AB +A’C+ BC(A+A’)
           =AB +A’C+ BCA+BCA’
           =AB(1 +C)+ A’C(1 +B)
           =AB +A’C

           =R.H.S.
           This theorem can be extended as,
           AB+A’C+BCD= AB+A’C
           Theorem 2:(A+ B)(A’+C)(B+ C) =(A+ B)(A’+C)
           Proof : L.H.S.=(A+B)(A’+ C)(B +C)

           =(AA’+AC+A’B+BC) (B+C)
           =(0+ AC+A’B+ BC)(B +C)
           =ACB +ACC+A’BB +A’BC+BCB +BCC
           =ABC+AC+ A’B+A’BC+ BC+BC

           =ABC+AC+A’B+A’BC+BC
           =AC(1 + B)+A’B(1+ C) +BC
           = AC+ A’B+BC       (1)
           R.H.S.=(A+B)(A’+C)
           = AA’+AC+ BA’+BC
           =0 +AC+BA’+BC

           = AC+ A’B+BC       (2)
           Equation (1) = Equation (2)So.
           L.H.S = R.H.S.
           This theorem can be extended to any no.of variables.

           (A+ B)(A’+C) (B +C+ D)=(A+B)(A’+C)
           Transposition theorem:
           Theorem:
           AB +A’C=
           (A+ C)(A’+B) Proof: R.H.S.=(A+C)(A’+B)

           =AA’+ AB+CA’+CB
           =0+AB+CA’+CB
           =AB+CA’+CB
           =AB+A’C     (B’cz of AB+A’C+BC= AB+A’C)

           =L.H.S.
           DeMorgan’sTheorem:
           Law1: (A+ B)’=A’· B’
           Proof:
           Law2: (A· B)’=A’+B’



                                                           18

                                     CITS : E & H - Electronics Mechanic - Lesson 5 - 8
   28   29   30   31   32   33   34   35   36   37   38