Page 35 - CITS - WCS - Mechanical
P. 35

Exercise 1.6.26Exercise 1.6.26Mechanic-
                                                             Exercise 1.6.26Exercise 1.6.26
 Workshop  Calculation  &  Science  -  Electronics  MechanicWorkshop  Calculation  &  Science  -  Electronics  MechanicWorkshop  Calculation  &  Science  -  Electronics Workshop  Calculation  &  Science  Electronics  Mechanic
                                                             Exercise 1.6.26Exercise 1.6.26Exercise 1.6.26Mechanic
 Trigonometry - Trigonometrical ratiosTrigonometry - Trigonometrical ratiosTrigonometry - Trigonometrical ratiosTrigonometry - Trigonometrical ratios
 Trigonometry - Trigonometrical ratiosTrigonometry - Trigonometrical ratiosTrigonometry - Trigonometrical ratiosTrigonometry - Trigonometrical ratios
 DependencyDependencyDependency Dependency
                               1
                              AC
                                                     1AC
                  AC
                                               1
                        1
                                           1
                                    1
                                                            1
                                         AC
                                                  θ 
                                                         
                      sec
                                        
           sec
                           
                                 sec
                                             sec
                                     θ
                                                               
                          θ
               θ 
                        AB
                                                           AB
                                   AB
                                            θ   AB
                                θ
                  AB
                                                       θ
                                                                cos
                                                   cosAB
                                                                    θ
                                         cos
                                         AB
                             cosAB
 DependencyDependencyDependencyDependency
                                                                  11
                                                                         1
                                               1AC
 The sides of a triangle bear constant ratios for a givenThe sides of a triangle bear constant ratios for a givenThe sides of a triangle bear constant ratios for a givenThe sides of a triangle bear constant ratios for a given AC
                                                      11 AC
                                                            1 1 AC
                                                          θ
                                     θ  sec  sec
                                                  θ
                                  sec
                                             θ
                                                                     
                                                   sec  
                                                               
                                              AC
                                                           AC
                                   AC
                        AC
 definite value of the angle.  That is, increase or decrease indefinite value of the angle.  That is, increase or decrease indefinite value of the angle.  That is, increase or decrease indefinite value of the angle.  That is, increase or decrease in
                                                                cos AB
                                                           AB
                                                    cos AB
                                               AB AB
                                                          cosAB
                                                              θ
                                                                    θ
                                                                          θ
                                         AB
                                                       θ   AB
 The sides of a triangle bear constant ratios for a givenThe sides of a triangle bear constant ratios for a givenThe sides of a triangle bear constant ratios for a givenThe sides of a triangle bear constant ratios for a given
 the length of the sides will not affect the ratio between themthe length of the sides will not affect the ratio between themthe length of the sides will not affect the ratio between themthe length of the sides will not affect the ratio between them
                                                           AC
                                              AC
                                                     AC
                                                                  AC
                              1 AB
                                               1
                                                            1
 definite value of the angle.  That is, increase or ddefinite value of the angle.  That is, incdefinite value of the angle.  Thadefinite value of the an
                        1se inr decrease inrease or decrease inat is, increase or decrease in
                                                     1AB
                  ABecrearease ot is, incgle.  Th
                                        AB
                                    1
                                          1
 unless the angle is changed. These ratios are trigonometricalunless the angle is changed. These ratios are trigonometricalunless the angle is changed. These ratios are trigonometricalunless the angle is changed. These ratios are trigonometrical
                                                              
                                             cot
                          θ
                                                         
              θ   
                                                 θ   
                                 cot
                      cot
           cot
                                     θ
                                        
                           
 the length of the sides will not affect the ratio between themthe length of the sides will not affect the ratio between themthe length of the sides will not affect the ratio between themthe length of the sides will not affect the ratio between them
                                         tanθ BC
                                                           BC
                       BC
                                   BC
                             tanθBC
                  BC
                                                   tanθBC
                                                                tanθ
                                        BC
                                                                  11
                                                            1 1 AB
 ratios.  For the given values of the angle  a  value of the ratiosratios.  For the given values of the angle  a  value of the ratiosratios.  For the given values of the angle  a  value of the ratiosratios.  For the given values of the angle  a  value of the ratios AB
                                                                        1
                                               1AB
                                                     11 AB
                                                   cot
                                             θ   cot
                                                  θ
                                     θ    cot
                                  cot
 unless the angle is changed. These ratios are trigonometricalunless the angle is changed. These ratios are trigonometricalunless the angle is changed. These ratios are trigonometricalunless the angle is changed. These ratios are trigonometrical
                                                                     
                                                              
                                                         θ   
                                                           AB
                       AB
                                              AB
                                   AB
                                                                 BC
                                                           BC
                                                     BC
                                              BC BC
                                                          tanθBC
                                                                tanθ
                                         BC
                                                                       tanθ
                                                    tanθBC
 BC BC
 AC
 AC AB AC
 AC ABAC
  BCf the angle  a  value of the ratiosvalues of the anglethe given values oFor
 AB BC
 AB AC
                AC  a  value of the ratiosf the angle  a  value of the ratios
 ABBC
   AC ABthe given values of the angle  a  value of the ratios
 BC
         AB
 ratios.  For the given values oratios.  For the given ratios.  For ratios.
 AB BCBC
 ,
 and ,
 , ,
 , ,
 , ,
 ,
             and
 ,
 and ,
        ,
 ,
 and ,
 ,
 do not change even whendo not change even whendo not change even whendo not change even when
                                     a sideBC AB
                                                                 AB
                                                     AB
                                                    sideBC AB
                 sideBC
                             sideBC
                                                a
                         a
                                                             a
  AC
 BC
 BCAB
 ACAC
 AC ACAB
 BC AC AB
 BC AB
              θ    BC
 AB
   BC BC
 BC AB
         AC
 AB
 AC AB
                                 sin
                                   θ  
                                                 θ 
                         θ  
                       sin
                                                           
           sin
                                                sin
    AC ABBC
 ABAB BCAC
                AB
 BCAC BC
         ABAB
                AC
          AC
                       AC
 ACBC
   AB
 BC
 ABBC ACBC
 , ,
                                     b sideAC
                 sideAC
                   and
 ,
 , ,
                                                b
           ,
   ,
                         b
             and ,
 and , ,
 ,,
 , ,
                                                             b
                                                    sideAC
       and , ,
                             sideAC
       do not change even whendo not change even whendo not change even whendo not change even when
 the sides AB, BC, AC are increased to AB', BC' and AC' orthe sides AB, BC, AC are increased to AB', BC' and AC' orthe sides AB, BC, AC are increased to AB', BC' and AC' orthe sides AB, BC, AC are increased to AB', BC' and AC' or sideBC sideBCsideBC sideBC
                                                a
                                                             a
                                                                   a
                                                       a
 BCAC ABAB
         AC
                       BC
                AC
 AB
          BC BC
    BC BCAC
   AC
 ACAB AB
 ABAB
 ACBC ACAB
                BC
                                                θ   sin
                                                                  
                                  sin
                                           θ    sin
                                     θ    sin
                                                           
                                                      θ  
 decreased to AB", BC" and AC".decreased to AB", BC" and AC".decreased to AB", BC" and AC".decreased to AB", BC" and AC".
                                        sideAC
                                                                   b
                                                          AB bsideAC
                                                 c b
                                                     side b
                                             ABsideACsideAC
                      AB
                                      c side
                           c side
                                                              c
                  side
                                  AB
 the sides AB, BC, AC are increased to AB', BC' and AC' orthe sides AB, BC, AC are increased to AB', BC' and AC' orthe sides AB, BC, AC are increased to AB', BC' and AC' orthe sides AB, BC, AC are increased to AB', BC' and AC' or
           cos
                                     θ   
                         θ  
                                                θ  
                       cos
                                 cos
                                                            
                                              cos
              θ   
                              sideAC
                           b
                                                              b
                                                 b
                                                     sideAC
                  sideAC
                                      b sideAC
 For the angle For the angleFor the angle For the angle
 decreased to AB", BC" and AC".decreased to AB", BC" and AC".decreased to AB", BC" and AC".decreased to AB", BC" and AC".
                                         side
                                                        c ABside
                                             ABside
                                                                     c
                                                  c ABside
                                                              c AB
                                                 θ   cos
                                  cos
                                            θ   cos
                                     θ    cos
                                                            
                                                       θ  
 AC   is the hypotenuseAC   is the hypotenuseAC   is the hypotenuseAC   is the hypotenuse
                                                              b
                                                        b
                                                                     b
                                                  b
                                         sideAC sideACsideAC sideAC
 For the angleFor the angleFor the angleFor the angle
                   a
                              a
                                         a
                                                      a
                                                          a
                                                    a
                          b θ
                                  a sin
                                         a
                                             a sin
            sin
 AB   is the adjacent sideAB   is the adjacent sideAB   is the adjacent sideAB   is the adjacent side
                                     b θ
                      asin
                                                                 a
              θ
                                                             b
                             a
                                                b θ
 AC   is the hypotenuseAC   is the hypotenuseAC   is the hypotenuseAC   is the hypotenuse
                   b
                              b
                                         b
                                                      b
                                               x a
                                                            xa
                                                    a
                                         a
                                
                 
                        x
                     
                                                        
                                    x
                                           
                            
                             c c
                                                    c c
                   c
                                         c c
 BC   is the opposite side.BC   is the opposite side.BC   is the opposite side.BC   is the opposite side.
           cos
                      bcos
               θ
                          cθ
                                             b cos
                                                                a
                                                                       a
                                                             c b
                                                                 c a b
                                     c θ  θ
                                                          ba
                                  b cos sin
                                            θ
                                                c θ  bθ
 AB   is the adjacent sideAB   is the adjacent sideAB   is the adjacent sideAB   is the adjacent side
                                         sin
                                                    a b aθ sin
                                                    a
                                             a sin
                                                      b
                                                             b
                                          b
                                                b
                                                                
                                                      x  
                                        
                                             
                                                          x
                                                    
                                                                     
                                               x
                                                                  x
                   b
                              b
                                                    c c b c
 BC   is the opposite side.BC   is the opposite side.BC   is the opposite side.BC   is the opposite side.
                                                                       c
                                         b c θ
                                         cos
                                                           c c
                                             bcos
                                                 c c θ
                                                                 c c
                                                      b c θ
                                      θ
                                  cos
                                                    bcos
                                                                b
 The ratios
 The ratios The ratios
 The ratios
                                                b
                                                      b
                                                             b
                                          b
 The ratiosThe ratiosThe ratiosThe ratios
                               side
                   side
                                              BC
                                                      side
                                                           BC
                       BC

                                         side


                                   BC

                            tan




                                                                   θ
                                        tan
                                                      θ
                                                                tan
                                θ
                                            θ
                                                   tan =
                                                              
                                                 
                            =
                =
                                       =
                                         side
                                                            AB
                                               AB
                   side
                                                      side
                                    AB
                              side
                        AB
                                                                 BC


                                          side
                                                           BCside
                                                     BCside


                                              BCside

                                                   tan


                                                             θ tan
                                                                   θ tan

                                       =
                                                   =
                                              =
                                                       θ tan =
                                                  1   ABside
                                           1   ABside
                                                        1   ABside
                                                             1   AB
                                       1 side
                                 1
                     1
                                                       θ sin θ
                                  sin
                                  θ  orθ   
                                               θ.cosec  or cosec   or θ   

                                                                             θ

                         orθ
                                                                                1 θ.cosec
           sin
                                                                or
                                                                  θ  sinθ
                       sin
                                                               cosec
                                                                                             1
              θ 

                                       cosec

                                                                                          θ 

                                                                     1 θ.cosec   sin or
                                            sinθ
                            cosec  
                                               sin

                                                          1θ.cosec     or
                                          or
                                     sin
                                         cosec
                                                    θcosec
                        θ
                             cosec

                                        θ
                                                 sin
                                                               θ
                                              θ
                                                                        sin
                                                           sin
                                                           θ
                  cosec


                                    θ
                                            1
                                                                    1
                                                              11
                                                                          1
                                                  1
                                                                                 1
                                                        1
                                                                                 1 θ.cosec    or
                                                                                                    1
                                                                 or 
                                                                             or
                                                               θ
                                                                                                 θ 
                                                                                             1

                                                                                       1 θ θ.cosec
                                            θ sin


                                     θ  sin
                                                                                    θ sin
                                                                      cosec   
                                  sin
                                                                              θ sin
                                                         θ cosec  cosec   or
                                                  cosec   or sin
                                                orθ
                                                                   sinθ or
                                                        θ


                                                     θ

                                                                     1 θ sin
                                             1 θcosec  cosec

                                         cosec
                                                           θcosec

                                                               θ θ
                                                            sin
                                                                               sin
                                                                            θ
                                                                  sin
                                                                                  θ
                               1
                                          1
                                                        1
                                  1
                   1
                                                       1

                                        cosθ

                       orcos
           cos
                                                                    sec
                                                                          θ or


                                                  θ

                                                               θ cos
                                              sec or  sec     cos
                                                         sec or  sec   or
                                                           .   θ
                                        sec  θ
                                                                                 sec
                                                                                  .   θ
                                               .   θ or
                                                                     .   θ
                                                                          1    cos
                                  or
                                                                                       θ
                                 cos
                                                   1   cos
                                      or
                                             
                                                    θ  θ
                                                                                       1   
              θ   
                         sec  θ  
                             θ 

                                           cosθ

                                                     sec
                             sec
                                                      cosθ
                                                                       θ
                                   θ

                                               θ
                                        sec
                                                          θ

                 sec
                                cosθ
                     θ
                                                                            1
                                                 1
                                                         1
                                          1
                                                                     1
                                                       1
                                                               1
                                                             1
                                                                                       θ
                                                               cosθor
                                                                     sec
                                                                                 1   sec   sec  . θ  cos
                                                                    sec   cos  θ
                                                                                             1   
                                                                          
                                                   θ sec   or  cos 

                                                                                              θ
                                            θ
                                              orcos
                                                          θ or
                                                                           θθor
                                                        θ
                                     θ    cos 
                                                                                 θ  .  θor
                                                                                       1
                                                sec  θ  

                                                                          1    sec   .   cos
                                                             or

                                                              sec
                                  cos
                                                                      .   θ or
                                                          θ cosθsec
                                        sec
                                                   θ
                                             1 θ sec   sec
                                                       cos
                                                                          cos
                                                        1 1   θ
                                                                 θ cos
                                                                     1 θ

                                                                             θ
                               1
                    1
                                          1
                                 1
                         cot θ 
                       or tan

                                                         tan   or
                                       cot θ

                                  tan
                                             tan   ortan
                                                          .   θ
                                     or
                                                                          θ or
                                  or
                                                               θ cot  cot
                                                               1       θ  


                                      θ
                                                   θ   θ  θ
                                              .   θ

                                                                                tan

           tan

                                                  or   cot
                                                   1   cot 
                                      cot
                                                                                       θ
                            θ   
                                                                                      1   
                                                             or
                                             
               θ 
                                                                   tan

                                               θ

                                            θ
                                tan θ

                                                      tanθ
                                                         θ
                                                     cot
                                                                   tan
                                        cot
                     θ
                                                                      θ
                             cot

                                   θ

                  cot
                                           tan

                                                        1
                                                 1
                                                              1
                                                                     1
                                                       1
                                          1
                                                               1

                                                                                       2 1    tan
                                  tan

                                              or 
                                                                     .
                                                         22     cot  or 
                                     θ  tan
                                                              cot θ
                                                                    2 tancot θ

                                              2 cot   θ  tan

                                                               2 θ   or    cot  or
                                                          θ   θ
                                                                          2 1  tan θ  cot

                                                    2 θ    cot  or tan
                                                                                             θ
                                                                          . or
                                                   
                                                                                             2 1   
                                                            or
                                                                                       θ  . θ
                                            θ
                                                                     2 θ   θ     

           By pythogoras theorem we have,  AC  = AB  + BCBy pythogoras theorem we have,  AC  = AB  + BCBy pythogoras theorem we have,  AC  = AB  + BCBy pythogoras theorem we have,  AC  = AB  + BC


                                            θ

                                                            θ
                                               cot
                                                                          tan
                                                                      θ
                                                          θ cot
                                                      tan
                                                                θ tan
                                                   θ cot
                                         cot
                                                                   θ

                                                                             θ
                                                             tan
                                  By pythogoras theorem we have,  AC  = AB  + BCBy pythogoras theorem we have,  AC  = AB  + BCBy pythogoras theorem we have,  AC  = AB  + BCBy pythogoras theorem we have,  AC  = AB  + BC
                                                                                                   2
                                                                                             2 2
                                                                                       22 2
                                                                     2
                                                                                222
 The six ratios between the sides have precise definitions.The six ratios between the sides have precise definitions.The six ratios between the sides have precise definitions.The six ratios between the sides have precise definitions.
 The six ratios between the sides have precise definitions.The six ratios between the sides have precise definitions.The six ratios between the sides have precise definitions.The six ratios between the sides have precise definitions.
 OppositeBC

     side Opposite
 sideOppositeBC



                  side
 sideOppositeBC
  Sine
                      
 Sinθ
 
 Sine , θ     BC  Sine θ     Workshop  Calculation  &  Science  -  Electronics  MechanicWorkshop  Calculation  &  Science  -  Electronics  MechanicWorkshop  Calculation  &  Science  -  Electronics  MechanicWorkshop  Calculation  &  Science  -  Electronics   1      θ  1   1     .   θ   cos θ.cosec  θ.cosec   sin or cos 1    cot  θ 1 22 1 θ θ            θ  . or   .   θ  2 2 1  tancot  Exercise 1.6.26
                           θ
         
              θ
           Sin
   θ   
        
 Sin
                        Sin
 θ
 θ
  Sine
 AC  Hypotenuse HypotenuseAC  AC  OppositeBC  OppositeBC  side    side
          Hypotenuse

 HypotenuseAC side OppositeBC
 BC
            side  Opposite
 Sine θ   Sine   θ   Sine θ    Sine   θ      Sin θ    Sin θ     Sin θ     Sin θ    0 0
              Signs of trigonometrical functions for angles more than 90
              Signs of trigonometrical functions for angles more than 90
 AC
    AC
 HypotenuseHypotenuseAC

       side Adjacent

 AB  AdjacentAB sideAdjacentAB   sideAdjacentAB  HypotenuseHypotenuseAC    side
                                                                                                    - θ
                                  90 + θ
 Cosine θ     Cosine θ    Cosine θ   Cos  θ   Cosine Cosθ     θ       WORKSHOP CALCULATION - CITS 180 + θ  270 - θ  270 + θ  360 - θ   - θ
                                          180 - θ
                          Cos
                                                                 270 - θ
                         90 - θ
             Cos Ratio
                              θ
                                                                                        360 - θ
 
 
 
 
                                                      180 + θ
                                                                            270 + θ
                                  90 + θ
                                          180 - θ
                         90 - θ
                 θ   Ratio
                                            Exercise 1.6.26Exercise 1.6.26Mechanic-
 AC &  Science  -  Electronics  Mechanic&  Science  -  Electronics  MechanicCalculation  &  Science  -  Electronics Workshop  Calculation  &  Science  Electronics  Mechanic
 Workshop  Calculation Workshop  Calculation Workshop   AdjacentAB  sin  side    side        cos     sin    - sin  - cos  Exercise 1.6.26Exercise 1.6.26
 AC
            Hypotenuse
 Hypotenuse HypotenuseAC
 HypotenuseAC side AdjacentAB
 AdjacentAB

 AB
              side  Adjacent
                                                                                        - sin
                    Cos cos
                                                                             - cos
                                                                                                   - sin
 Cosine CosineCosine
   θ  Cosine
                                 Cos
                                     θ
            
           θ   
 θ   
  θ   
    
                  θ   
                                             sin
                        θ   Cos cos
                              θ          cos
                                                        - sin
              Cos sin
 HypotenuseHypotenuseAC &  Science  -  Electronics  Mechanic&  Science  -  Electronics  Mechanic
 Workshop  Calculation Workshop  Calculation
                                                   Exercise 1.6.26Exercise 1.6.26
 Trigonometry - Trigonometrical ratiosTrigonometry - Trigonometrical ratiosTrigonometry - Trigonometrical ratiosTrigonometry - Trigonometrical ratios  - cos   - cos  - sin  - sin
      AC
 AC
            HypotenuseHypotenuseAC
 sideOppositeBC



 OppositeBC
 sideOppositeBC
                     side
        side Opposite

 BC
                                                                                 sin
                                                       - cos
                                                                 - sin
                                   - sin
                                                                                        cos
                          sin
                                             - cos
                                                                                                   cos
                 cos
                          sin
                                   - sin
                                             - cos
                                                                                        cos
           Convert into degree, minute and seconds
                                                       - cos
                 cos
                                                                                 sin
                                                                 - sin
                                                  Exercise 1.6.26Exercise 1.6.26
 Workshop  Calculation  &  Science  -  Electronics  MechanicWorkshop  Calculation  &  Science  -  Electronics  Mechanic
 Tangent θ    Tangent  θ   Tangent θ   Tan  θ  Tangent Tanθ    θ     Dividing both sides of the equation by AC , we haveDividing both sides of the equation by AC , we haveDividing both sides of the equation by AC , we haveDividing both sides of the equation by AC , we have  cos
           
 
             
  
                  θ
                           Tan
 
                               θ
              Tan
                          
 
                                                                                  2
                                                          2
                                                                     2
                                              2
 Trigonometry - Trigonometrical ratiosTrigonometry - Trigonometrical ratios
                     side
 AB


               side
                      side
 BC
        side Adjacent OppositeOppositeBC

                            side
                                                                              - cot
 Dependency Dependency Dependency
                                                                                                   - tan
 Dependency  AdjacentAB sideAdjacentAB   sideAdjacentAB side OppositeOppositeBC θ        BC   θ     2 -  Electronics -  Electronics      - tan 22  1AC     tan 1 sec  Exercise 1.6.26  2  - tan  - tan
                                                                  cot
                         cot
                 tan
                                  - cot
                                                          tan
                                                                  cot
                                              - tan
                         cot
                 tan
           6  46.723°
                                                                                        2 - tan
                                                                            2  - cot
                              1
                                                                1AC
                                  - cot 1 AC
                                                                              1
                                                                     2 1
                        AC
                                             1
 Workshop  Calculation  &  Science Workshop  Calculation  &  Science
                               sec Mechanic
                                           2  sec  Exercise 1.6.26Mechanic
                               θ   
                     Tan
                         θ   Tan
                   θ   
  θ   
 TangentTangentTangentTangent
 θ   
               Tan
                                      θ
                                  Tan
                                2 Dividing both sides of the equation by AC , we haveDividing both sides of the equation by AC , we haveDividing both sides of the equation by AC , we haveDividing both sides of the equation by AC , we have
                                               θ
                                  θ
                                                        2 
                 sec
                          2 2 
                    2 θ 
                                     2 
                                                              2 θ 
                                                                          
                                                                     
 Trigonometry - Trigonometrical ratiosTrigonometry - Trigonometrical ratios
                                      2
                       BC
                             AB AC
                       AC
                  AB
           AC
                                               AC
                                   BC
                                        AB
                                              BC
         side AdjacentAdjacentAB
 AB
          AB
 AdjacentAdjacentAB
               side
                     side


                            side AB
                                            AB
                                                                             - sec θ
                                                 cos
                                   sec θ cosAB
                                              cosec       - cosec cosAB
                                                                  θ   AB
                 cosec AB
                                                                                         - cosec
                                                                                                   - cosec
              Hypotenuse sec
 DependencyDependency
 The sides of a triangle bear constant ratios for a givenThe sides of a triangle bear constant ratios for a givenThe sides of a triangle bear constant ratios for a givenThe sides of a triangle bear constant ratios for a given θ   AB  AB BC  - sec  AB  cos      - cosec  - cosec
                                      =
                                            +
                                                   =
 AC
        AC
           7  68.625°  +
                                                         +
 HypotenuseAC
 Hypotenuse HypotenuseAC
                =cosec
                                           2 11
                           = AC
                         sec
                                                                             - sec
                                                                 - sec
                                  +  sec 1AC
                                                 22 1
                                              cosec       - cosec
 Cosec  Cosecant
 Cosecant  θ    Cosecant  θ   Cosecant  θ    θ    θ    θ    2 Cosec   2 θ  A sec  2 2  Cosec  2  θ θ AC   2 2 2  AC AC ACAC 222  AC AC AC 22  2
    Cosec
                       ACC θ  sec
                          
 
 
                                                        2
                                                              2
 Trigonometry - Trigonometrical ratiosTrigonometry - Trigonometrical ratios
                                               
                             AC AC
                  AC
           AC
                                           22
                                                        2 22
                              AC
                                         AB
                                         AC
                                                     BCAB
                                                                 BC
                                              AC
                                  AC
                                              BCAB
 definite value of the angle.  That is, increase or decrease indefinite value of the angle.  That is, increase or decrease indefinite value of the angle.  That is, increase or decrease indefinite value of the angle.  That is, increase or decrease in AC  += BCAB    - cosec AC      cosec  sec    sec
                                  - cosec cos AB
 sideOpposite BC
 OppositeBC
         side Opposite
                                              - sec cos
 BC
                      side


                         cosec AB
                                             θ

                                    AB AB
 sideOppositeBC
                                                    θ

                                                                                        sec
                                                        - sec
                                                                                                     sec
                                                                               cosec
              HypotenuseHypotenuseACsec
 DependencyDependency
  HypotenuseHypotenuseAC
 AC
        AC
                                                   + =   - sec
                         cosec
                                  - cosec
 The sides of a triangle bear constant ratios for a givenThe sides of a triangle bear constant ratios for a given
                                                                 - cosec
                                              - sec
                                       =
                                             +=
                 sec
                                                                +
                                     2 1 AC
                                           22 1 1
           8  0.1269 Radians AC
                                                 222 1
 θ   
            θ
              
     θ
 CosecantCosecantCosecantCosecant
               Cosec  
  θ   
      
 the length of the sides will not affect the ratio between themthe length of the sides will not affect the ratio between themthe length of the sides will not affect the ratio between themthe length of the sides will not affect the ratio between them 2 ACCAC 2 22  1 ACAC 2 22  1AB  2  1  1
                           θ
                                        θ 
                               sec
                                              ACACAC 
                       sec
                     θCosec  Cosec   
                                 θCosec  θ 
                           θ
                                                     A
                                                                 AC
                                                2
                          2
                  2
                             2
                                  AC AC
                                      2 2 ACAC AC
                     side AB
 definite value of the angle.  That is, increase or decrease indefinite value of the angle.  That is, increase or decrease in
                            side 1
                                    1 AB
                                                  1AB
           BC

         side OppositeOppositeBC

 OppositeOppositeBC
 BC
                side
                                            1 AB
                                   AB
                                                         cot
                         tan
                                            θ
                                  - tanAB
                              AB
                                             - cot cos
                 cot
                                                                 tan                - tan           - cot               - cot
                     ⎡
 DependencyDependency
 HypotenuseAC
 Hypotenuse HypotenuseAC
            ⎡ Hypotenuse
 AC
      AC
                      BC ⎡tan
              AB⎤ cot θ cotmet
 unless the angle is changed. These ratios are trigonometricalunless the angle is changed. These ratios are trigonounless the angle is changeunless th 9  2.625 Radians ⎤ AB⎤ ricald. These ratios are trigonometricale angle is changed. These ratios are trigonometrical 11AC cos 1 ⎡ - cot θ cot  ⎡   θ    ⎡ cot    tan                - tan           - cot               - cot
                                ⎡ ⎡ - tan
 The sides of a triangle bear constant ratios for a givenThe sides of a triangle bear constant ratios for a given
                               cot
                                 θ
                                  BC⎤ AB⎤  1
                                            BC⎤ AB⎤ 
                                                         BC⎤ θ cot
                                                                          
                              AC
                                                                    
  θ
 θ    Secant
           = Sec
           
  Sec  
      θ
 Sec
 
                          Sec
                 θ
 Secant  θ   the length of the sides will not affect the ratio between themthe length of the sides will not affect the ratio between them θsec   BC + =  AC  +  AC = 2  + ⎢ 2BC 2  2 BC  tanθ
          
 θ Secant
                      = 
 
                   +
 Secant
 θ  
                              θ sec
                                     ⎥ ⎥ 2 BC 
                                ⎢ ⎢ tanθBC  θ
                                               ⎥ ⎢ 2 tanθBC
                     ⎢
            ⎢
                         ⎥ ⎢ BC
                 ⎥
                                                    ⎥ 2
                                                  1
 definite value of the angle.  That is, increase or decrease indefinite value of the angle.  That is, increase or decrease in
 ratios.  For the given values of the angle  a  value of the ratiosratios.  For the given values of the angle  a  value of the ratiosratios.  For the given values of the angle  a  value of the ratiosratios.  For the given values of the angle  a  value of the ratios  ⎣BC ⎥ 2tanθBC
                                    1AB
                            ⎥ AB
                                    AB
                                           ⎢ 11 AB
 sideAdjacent AB

 sideAdjacentAB
                    side
                     ⎣

       side Adjacent
              AC⎦
 AB


 AdjacentAB
                                             θ
           10 3/5 Radians ⎦ AC⎦ AB
                                                ⎣AB θ cos
                                                                BC⎤
                      AC ⎣
                                                         AC⎦ ⎤ ⎡
                                ⎣ ⎣ AB AB
                                         cos
                                           ⎣ BC⎤ ⎡ ⎤ ⎡
                                            ⎡ AB⎤ ⎡
                                  AC⎦ AC⎦ ⎤ ⎡
                                            AC⎦ AC⎦ BC⎤ ⎡ AB⎤
 The sides of a triangle bear constant ratios for a givenThe sides of a triangle bear constant ratios for a given
      AC
 AC
 HypotenuseHypotenuseAC
            ⎣ HypotenuseHypotenuseAC
                       cot
 unless the angle is changed. These ratios are trigonometricalunless the angle is changed. These ratios are trigonometrical
                                   ⎡ 
                             AB
  θ   
                              θ Sec
 Secant SecantSecant
            
           θ   
 the length of the sides will not affect the ratio between themthe length of the sides will not affect the ratio between them θ    cot θ   = θ     + AB =   +  =  + AB  +  AB  0 - θ) = - tan θ
    
                        θ Sec  
             Sec  
                 θ Sec  
 θ   
   θ  Secant
                                   BC
                                        = BC
                                         2 ⎢ ⎥ ⎢ tanθ
                              BC
                                                ⎥ ⎢ ⎥ ⎢
                                    AC
                                                    2 ⎥ ⎢ ⎥
                                           2 ⎢ tanθ AC
                                                            ⎥ ⎢
                                                                   tan ( 180
              Simplify :
                                                                           0
 ABACe angle.  That is, increase or decrease infinite value of the angle.  That is, increase or decrease in
 definite value of thde
 ABAC
           1 =  (cos θ) side AdjacentAdjacentAB Simplify : ABABBCios value of the ratios
 AC ABBCthe anglegiven values
                                    1 AB
     BC
               AC
 BC
                                                  1
 BC  AC ratios.  For the given values of ratios.  For the   AB  AdjacentAdjacentAB ACABBC  a  value of the ratof the angle  a  side Adjacent    side   side 2 AC AB 2 ⎢ BC ⎥ 1 1 AC⎦ ⎣ ⎦ ⎣  2  AC⎦ ⎣  2 ⎥ tan ( 180 - θ) = - tan θ
         AB ABAC
 BC
 ABBC
           Simplify:  + (sin θ)1 =  (cos θ)  + (sin θ)1 =  (cos θ)  + (sin θ)1 =  (cos θ)  + (sin θ) ACAC⎦
       side
                                                                   ⎦
                                   ⎣
              side
                                            ⎣ AC⎦ ⎣
                                    AC⎦ ⎣
                                                   AC⎦ ⎣
                                                 AC
                     2
 sideAdjacent AB

 AB
 AdjacentAB


 sideAdjacentAB
          and,
                                        
 , ,
 and, angle is changed. These ratios are trigonometrical
                ,
 ,
 , unl
 ,
                    , cot
                        and θ  
 , ,s the
                               cot
      , ,
 and ,,
 ,ess the angle is changed. These ratios are trigonometricalunles
 do not change even whendo not change even whendo not change even whendo not change even when
                                    AB
                                                           a
 Cotangent the length of the sides will not affect the ratio between themthe length of the sides will not affect the ratio between them    Cot a θ   sideBC AB a   2  21  2  2 2 θ sin  2   sideBC  2   a  0 - θ) = sec θ
                                                  sideBC
                       sideBC
 
   θ    Cotangent
      Cot 
 θ
                    θ
 
             
   θ   Cotangent
      θ
                 Cot
 
  θ   
               
                                 θ
 Cot Cotangent
          θ
                                        tanθ BC
                                   BC
 AC
 BC BCAB
                            BC BC
 ACAB
 AC
             AC
                                  2 θ    BC
 BCAB
              BCBC
 AB
 AC
 BCBCAB
 AB
       ACAB
 ACAB
                    θ    AC
                                            2     tanθ
                                                                   sec (360
                                                                           0
              cot θ + tan (180+θ) + tan(90-θ) + (tan 360 - θ)
                                                                   sec (360 - θ) = sec θ
                                            2 sin 1
                                           1
                              AB
                               sin
                                               θ
                 sin
                                    2  1 AB
 AC
 AB BC
 sideOppositeBC ACABAB
 AC
    AB
 BC BCAC BC
 ratios.  For the given values of the angle  a  value of the ratiosratios.  For the given values of the angle  a  value of the ratios
           sidecot θ + tan (180+θ) + tan(90-θ) + (tan 360 - θ)
 BC
 OppositeBC
             2  Opposite


 sideOpposite BC
                      2 side
           cot θ  +  cos  θ   = 1sin ) + tan (90-θ  +  cos  θ   = 1sin ))1 =  (cos θ)1 =  (cos θ)1 =  (cos θ)
                                  1 =  (cos θ)  + (sin θ + (sin θ) + (sin θ) + (sin θ)
                                                                2
                         2
                                                    2
           side AdjacentAdjacentAB
 AB
 , angle is changed. These ratios are trigonometricalunless the angle is


 unless the
 and, changed. These ratios are trigonometrical
                 side
                       side
 do not change even whendo not change even when θ cot
                                     sideAC 
 ,
                              side b θ cot
                                              b 
                                    
 ,
                                       
                                                  sideAC
 , ,
 , ,
                                                           b
                         sideAC 
 and
                                    Cot asideBC AB
                           θ   sideBC AB
                     θ   AB', BC' and AC' orare increased to AB', BC' and AC' or
                                             a
   θ   BC, AC are increased to the sides AB, BC, AC
 the sides AB, BC, AC are increased to AB', BC' and AC' orthe sides AB, BC, AC are increased to AB', BC' and AC' orthe sides AB,  AdjacentAdjacentAB    θ       AB sin  + tan (180+θ  +  cos  θ   = 1sin ) + (tan 360 - θ  +  cos  θ   = 1 sideAC  b  0
 CotangentCotangent
                              Cot
   θ   CotangentCotangent
                                        θ
                        Cot
                                   BC
               θ   
                
                                         tanθ BC
                 Cot 
                                 θ   
 BCAC
 AB
 AB AB
                          θ    BC
                                    2   BC
 BC
 AC AB
                                                 tanθ
 BC AC
 AC BC
                            = cot θ + tan θ - cot θ - tan  θ
                       sin
                              sin
                                 θ   
 AC
 BC AC value of the ratiosof the angle  a  value of the ratios
 AB ABBC
 ratios.  For the given values of the angle  a ratios.  For the given values
 BC
 ABAC
 BCBC
 ACAB
                        side = cot θ + tan θ - cot θ - tan  θ
         BC
                                  sin  + tan θ  +  cos  θ   = 1sin  - tan  θ  +  cos  θ   = 1
           sideOppositeOppositeBC
                                = cot θ  +  cos  θ   = 1sin  - cot θ  +  cos  θ   = 1sin

                  side
                                                                   sin ( 180 + θ) = - sin θ
                              side

  OppositeOppositeBC


                                                   2
                                                       2
                                             2
 decreased to AB", BC" and AC".decreased to AB", BC" and AC".decreased to AB", BC" and AC".decreased to AB", BC" and AC".
 ,
 ,,
 and ,,
                                      side
 ,,
 Relationship between the ratiosRelationship between the ratiosRelationship between the ratiosRelationship between the ratios side  AB sideAC sideAC 2   cos c  2   side  AB 2 cos θ  2 side sin ( 180 0 + θ) = - sin θ
                                                                     AB
 and
 ,
                                                            c
                                                                          c
                                          AB b
                                      b
                                 c
 do not change even whendo not change even when
                                     a sideBC AB
                             sideBC AB
              Sine,  Cosine,  Tangent,  Cosec, Sec  andSine,  Cosine,  Tangent,  Cosec, Sec  andSine,  Cosine,  Tangent,  Cosec, Sec  andSine,  Cosine,  Tangent,  Cosec,  Sec  and
 the sides AB, BC, AC are increased to AB', BC' and AC' orthe sides AB, BC, AC are increased to AB', BC' and AC' or
                                             a
                    θ   
                 cos
                                              θ  
                                                                        
                               cos
                                                             
                                  θ   
 BCAC
 AB
 BCAB
 AC BCAC
 BC
 AB
                                  θ
                                    
                            = 0 sin
                         θ   
                       sin
 AB ABBC
  AC
 BCBC
 ABAC
 BC
 ACAB
                                                                   cot (90b
                                      sideAC
                        sideAC
                            = 0 b

    For the angle
              Cotangent are the six trigonometrical ratiosCotangent are the six trigonometrical ratiosCotangent are the six trigonometrical ratiosCotangent are the six trigonometrical ratios
 For the angle 1 , AC , ACAB 1 Relationship between the ratiosRelationship between the ratiosRelationship between the ratiosRelationship between the ratios side  AB side    c b  sideAC  b  sideAC  0 + θ) = - tan θ
                                = 0
 For the angle For the angle
 decreased to AB", BC" and AC".decreased to AB", BC" and AC".
                                                                          0
                                                                   cot (90  + θ) = - tan θ
                                       c  AB b
 1 ,,
                                     b sideAC
 and,
                             sideAC
 AC ,,
 and
 1 ,
                1
         1
 AC
 AC
   1AC
 1 do not change even whendo not change even when
                                              a
                                      a sideBC
                       cos
 
 
      
 Cosec  θ   the sides AB, BC, AC are increased to AB', BC' and AC' orthe sides AB, BC, AC are increased to AB', BC' and AC' or θ     sideBC θ      Sine,  Cosine,  Tangent,  Cosec, Sec  andSine,  Cosine,  Tangent,  Cosec, Sec  andSine,  Cosine,  Tangent,  Cosec, Sec  andSine,  Cosine,  Tangent,  Cosec, Sec  and
                                     
                                  θ   
                           θ    cos
            
                                            
  Cosec
 BCAC
 θ  BC
 Cosec  ABAB
 θ AC
  Cosec   BCACABAB
  BC
 θ AC
                                sin
                                            
              Simplify :sin
              Simplify :
 AC   is the hypotenuseAC   is the hypotenuseAC   is the hypotenuseAC   is the hypotenuse  side  AB bsideAC Sin   a  2  Sin   2  a  2     2
                              sideAC sideAC
                                       b
                                 Sin  Cotangent are the six trigonometrical ratiosCotangent are the six trigonometrical ratiosCotangent are the six trigonometrical ratiosCotangent are the six trigonometrical ratios
                                              b
 BC
 BC
 BC
    θ
 sin
 θ
 BC
 sinBC
 θ
 BC For the angleFor the angle
                 θ
              sin
        BCSimplify:
 sinBC
 decreased to AB", BC" and AC".decreased to AB", BC" and AC".
                     Sin 
                                       a
                                   2  c  ABside
                             sideAC
                                            2  c b
                11
                      1 a
 1AC
 AC
   11 AC
          1 1 AC
 the sides AB, BC, AC are increased to AB', BC' and AC' orthe sides AB, BC, AC are increased to AB', BC' and AC' or
                                        θ  θ =
                                        θ = =
                             θ = =
                                                     θ  θ =
                 θ  θ =
                                                          2
                             θ  θ =
                                                 tan θ = θ =
                                                     θ = =
                                               2
                 θ = =
                            and sin  θθ θθ θ + cos  θ θ  θ θ  θ = 1 and sin  θθ θθ θ + cos  θ θ  θ θ  θ = 1 and sin  θθ θθ θ + cos  θ θ  θ θ  θ = 1 and sin  θθ θθ θ + cos  θ θ  θ θ  θ = 1 sec  θ90 cos
                                                                                     
                                                                                             180 
                       cos
                                             
  θ
                          θ   
                                      
              tan θ = θ =  
            
 Cosec
 θ Cosec  Cosec
 θCosec
 
       θ 
 AC
 AC
 AC
                                                                          90 
         AC
                    θ
                                b sin
                                                        Cos   ab θ sin
              sin BC sin
 AB   is the adjacent sideAB   is the adjacent sideAB   is the adjacent sideAB   is the adjacent side tan θ = θ =   cos  θ   θ a θ    tan θ = θ =  a Cos   ab θ sin b   Sin  Sin     b 2   a 2  x    cos b 2   a   θ       sec     θ  θ           tan   tan  180    θ  θ
                                                        a
 AC   is the hypotenuseAC   is the hypotenuse
        BC
  sin BC
    θ   BC
 BC
                                                    b
                     Cos   a sideAC
 BC BC
        sinBC
                        θ    θ b
                                 Cos   b bsideAC
 For the angleFor the angle
           θ
                    90
                               sec  
                                              θ

                                   θ
                 θ    cos
                     sin 

 decreased to AB", BC" and AC".decreased to AB", BC" and AC".
                                       tan


                                      180 
                                                               Sin 

                    cos
                                                                and sin  θθ θθ 
                                      180   AB
                                       tan  acside
                                            Sin  c
                               sec   x a  AB
                              side


                                              θ x
                    90  
                          θ 
                                                          2  x
                                         
                                                      
                                                           θ  θ =
                                               θ = =
                                                           θ = =
                                                     θ = =
                                        θ  θ = tan θ = θ =
                                                                                      2
                                                                      and sin  θθ θθ
                                                                 2
                                    tan θ = θ =
                                               θ  θ = tan θ = θ = tan θ = θ =
                                                                                               90 
                                                   and sin  θθ θθ θ + cos  θ θ  θ θ  θ = 1θ + cos  θ θ  θ θ  θ = 1θ + cos  θ θ  θ θ  θ = 1θ + cos  θ θ  θ θ  θ = 1 θ180sin θ360sec
                                              
                       cos
                                cos
                                      
                         c
                                                                  c
 AC
   AC
        AC
                                            Cos   Cos  Cos   Cos   b
               AC cos
                                                           c cos
                                c cos
                                                                         c
                                                               c θ
                     θ
                                          aa
                                      b
 BC   is the opposite side.BC   is the opposite side.BC   is the opposite side.BC   is the opposite side. θ sin  θ     θ    b sin  θ   c θ  a θ     θ  θ x  a c θ = =  b cos  c c θ  θ =  b  and sin  θθ θθ  61  sec   360  c 2   2   θ    61    sin 180      θ       61 cot cot  90    θ  θ
                                              c θ  a
                                             b
 AB   is the adjacent sideAB   is the adjacent side
 AC   is the hypotenuseAC   is the hypotenuse
                                         cos b sideAC
                                               θ b
                             sin b sideAC
                                       b
 For the angleFor the angle
                              180 
                   sec
                                         90 
                   360 
                   sec
                   360 
                          θ

                                                         61
                             sin  a
                             180  
                                         cos 
                                               θ 
                                         90  x
                         b
                                       b c
 BC   is the opposite side.BC   is the opposite side.
                               c cos
                       cos
                                      c b
 The ratios
 The ratios is the adjacent sideAB   is the adjacent side  The ratios  sin  θ   θ     a sin  b θ  a θ    x a  a cb a x c b   c a  b  b  61  ( si−  61 )(secθnθ )(secθ )(tanθ )
 AB
 The ratios
 AC   is the hypotenuseAC   is the hypotenuse
                              b
                                      b
                                                                                     ( sinθ−
                                                                                             61 )(tanθ
                                
                                        
                                  θ
                              sin
                                   sec  x
                                             tan x  
                                                                                  =
                                   sec  x  b c
 BC   is the opposite side.BC   is the opposite side.         =      sin b c cos θ   bθ aθ  tan    =  x θ   θ c b a θ      tan x   c ba BC    tan θ   c a θ         side    BC   tan    =  θ side    BC    tan    θ  =  (sec  θ )( sinθ−  )( tanθ−  61 ) )
 The ratiosThe ratios
                       cos
                        sin
 AB   is the adjacent sideAB   is the adjacent side
                             BCsin
                                     c b
                         side θ θ
                                       side
                                       b
                               b
                                                                                        θ
                                                                                    (sec
                                                                                         )( sinθ−
                                                    θ
                                                    
                                                                                               )( tanθ−
                                  
                      =
                             
                                             x
                             sec
                                 θ
                                            sin x  
                                          θ
                             sec
                                 θ
                                            sin x  
                                                  θ
                                          θ     AB
                         side
                                   sin x   side
 Signs of trigonometrical functions for angles more than 90 0         = θ      AB b c cos  sin x   b   tan BC cb θ   tan c θ   =   side   AB  side   AB  )
                                   BCsidecc c
                       cos
 BC   is the opposite side.BC   is the opposite side.
                                      b θ
 The ratiosThe ratios
                               side


                                                   θ

                             =
                                    =
                                                                                  = 1
                               b
                                  360 - θ 1   ABside
 90 + θ
                                                           1
                           1
 90 - θ
                                                                    1
                                               - θ
                                             1
                                                      1
                                     1 side
                             tanθ BC  side
 Ratio The ratiosThe ratios  180 - θ  180 + θ  270 - θ sin    θ  270 + θ side   AB b     BC or    θ    sin   θ.cosec  θ  sin      1  sin    θ.cosec    1 or   cosec    = 1  1  θ  or 1 θ.cosec   sin  θ  1
                                                                           θ sin or
                                     1 θ 
                                    
                                                                              1 θ.cosec    θ 
                             tanθ cosec   or θ  sin
                                                or cosec  
                                                                   θ
                                                           or
                                            sin
                                                             θ orcosec  θ
                                  
                                        tan
                                          secθ tan
                                      
                                          θ
                                                                   Simplify:
                                 =    =    =  cosec       θ     θ  θ     θ  cosec    sin    θ
                                          secθ
                                        
                                                         sin
                                                   cosec
                                 =    θcosec
                                                                   Simplify: θ  sinθ
                                           sinθ
                                   cosθ 1   ABside
                             sinθ1   ABside
                                    cosθ
 sin  cos        cos     sin    - sin  - cos   - cos  sinθ - sin side    BC - sin 1  1
                               side

                                   BC
                                                                          θ
                       sin    θ  sin    θ  =     cosec  or θ cosec       tan    θ θ or   sin   θ.cosec  θ sin or  θ .cosec    1  0 + θ) + tan (90  + θ) + tan (360 - θ)
                                                                      1
                                      or

                                         tan
                                            θ
                             =
                                                                   Cot θ + tan ( 180
                                                                                   0
                                                                                                             0
                                                                                               0
                                                                                                             0
                                           θ

                                                                                               0

                                                      1 sin
                                                 sin
                                                     1 θ
                                                            θ
                                                                                 1
                               side
                                        1 1 1   AB
                                 1   AB side
            - sin
                                                           1
 cos   sin   - sin     - cos   - cos  Simplify:     1 θ  or cosec   θcosec     or    θor    θ    .   θ sec   orθ    θ   or θ.cosec   sin 1    orsec   cos or    .   θ θ θ.cosec    1 1 Cot θ + tan ( 180 + θ) + tan (90  + θ) + tan (360 - θ)
                                  cos
                                              cos 1
              simplify:        sin
                                                                                                   θ

                                                                                              .   θ
                                                                                       cos
                                                                  sec  or
                                                                               θ
                                                                                             sec
                                                                                .   θ

                                                                        θ or
                                                                                     1   
                                            orsec   cos
                                                            cosθθ

                                                                                     θ or
                                                                               sec
                                                                                                   1   
                                                                  sin
              simplify: θ cos  sin
                                              cosθ  cosec
                                                                     1
                                       cosec
                               sec  θ cos θ  sin
                                   θ   or
                                                                        1    cos sec    1θ 
                                                   sec
                                                    cosθ
                                                                                   θ
                                           θ
                       sec
                                      cos
                                                                               cos
                                                                 cos

                                                                   tan (180
                                   θ cosec

                                              1 sin
                                                    θ
                           θ cosec
                                                                   tan (180  - θ) = tan θ
                                                     1
                                                           1
 tan  cot  - cot      - tan      tan   cot    - cot  1 1 θ    - tan sec   θ θ  - tan 1   cos orθ    θ sin    θ    θ   or 1    sec  .  θ sin  sec     θ θ   θ   1    1  0 0 - θ) = tan θ
                                       1 1
                                                           .   θor
                                     sec
                                   or
                                                  or
                          θ    cos
                                         θ  sec   or
                                                    θ 

                                        tan cosec
                       cos   sin
                                                θ θ cosec
                                                            sin 
                                sec     sin
                                                          sec cos  θ.cosec


                                       180 
                    90 


                        cos  cos  90   1  θ  θ θ  sec     θ  θ θ      or  tan sec    or  cos θ    1 1 θ    11 θθ.cosec     θ  1  1
                                       180  cosθ
                                sec   θ θ cosec
                                             1 θ
                              cosec
                                                θ θ   sin
                                       11
                                                          sin

                               1
                                                      1
                                                                   tan (90
                                                                          0
 cosec  sec   sec      cosec       - cosec  - sec  tan 360   - sec  or cos θ   θ  sec   or θ      θ     1 θ  90    sec    θ  θ    .   θ   cos   tan         θ   or  .  θ    1    orcot  tan  θsec    θ  cos or   cotθ θ   θ       .   θ   1    . tan tan (90  + θ) = - cot θ 1  θ  tan . θ  cot or  or 1  θ  1    cot    0 + θ) = - cot θ   cot       .   θ  tan       θ  1   
                                   - cosec
                                              - cosec
                                                                       θ
                                           or  tan
                                tan
                                             cotcot
                               cot

                                                                           θ   
                                                                                   or

                                                                 sec
                                            or  or
                          θ
                                                  θ θ or  θ
                    θ  cos 
                   sec
                           θ
                              sin
                                         cot

                              180 
                              180 
                              sin

                   sec
                                          90 

                                                                               tan

                                                                     θ
                                                    tan
                                                                    θ
                                                                                  θ
                                      θ tancot θ
                                         cot θθ cos
                                     sec
                                              1 θ
                                1θ
                                       1
                                                     1
                                        1
                                1
                                              1
                                                      1
                                                sec
                         cosec
 sec  cosec  - cosec      - sec    - sec     - cosec  360  cot    θ   θ θ   sec      θ θ  sec    sec   θ    cot  or   or sec   or  or cot cos   θ    θ θ   .   θ    2     tan . θ  cot  cos or    θ   θ     tan  cot tan (360  - θ) = - tan θ  2  2  2  2
                                                                   tan (360
                                                                           0
                                                                           0 - θ) = - tan θ
                                                         tan
                                                    2    or   sec  . θ  cos
                                                               2 1   1   . θ
                                                                  2 θ   θsec
                                                                      
                                cos
                                                                        2 1
                                                   θ     θ
                       cos

                                                   cot

                                      cot θ
                       tan
                                   or  
                                                                      1    
                           θ  tan or
                 By pythogoras theorem we have,  AC  = AB  + BCBy pythogoras theorem we have,  AC  = AB  + BCBy pythogoras theorem we have,  AC  = AB  + BCBy pythogoras theorem we have,  AC  = AB  + BC
                                                                                     2
                                                                             2 2
              cos (90 0              cot sec    tan       θ θ  tan cos

                                             1 cos
                     0 + θ) = - sin θ θ  cot

              cos (90 + θ) = - sin θ 1 θsec
                                         θ θ
                                                      θ θ
                                       1
                                                     1
 cot  tan  - tan  - cot  cot  tan                - tan           - cot               - cot   cot       .   θ    tanor 2 θ  cot       1    2 2   tan .   θ  cot θ + tan (180 0 + θ)+ tan (90  + θ) + tan ( 360 - θ)
                                                                       θ
                       tan
                                                  θ

                                             cot
                               tan
                                     cot

                                  orθ
                                        θ   or

                                                                      2 2 1 
                                                 or
                                      
                          θ 

                                                                                 0
                                                                                                            0
                                                                                              0
                       By pythogoras theorem we have,  AC  = AB  + BCBy pythogoras theorem we have,  AC  = AB  + BC

                                                                                                            0
                                                                             2
                                                                                              0
 The six ratios between the sides have precise definitions.The six ratios between the sides have precise definitions.The six ratios between the sides have precise definitions.The six ratios between the sides have precise definitions.     θ  cot θ + tan (180  + θ)+ tan (90  + θ) + tan ( 360 - θ)
                                           tan

              sec (- θ) = sec θ cot

                                               θ
                                      cot
                                 θ
                                                   tan

                                         θ
              sec (- θ) = sec θ
                                                      1
                                              1
                                1
                                        1
                       tan
                                                                     2  θ 
                                                         2      cot or
                                tan
                                                                       2 1
                                       
                                                                  2
                                                                               - cot θ - tan θ = 0
                      By pythogoras theorem we have,  AC  = AB  + BCBy pythogoras theorem we have,  AC  = AB  + BC

                                                                   cot θ + tan θ
                                                                             2
 BC
                      0  Opposite
                side
 Opposite
 OppositeBC

  side Opposite

                BC
 sideBC

                                      cot
              tan ( 180 - θ) = - tan θ θ  cot
                                               θ
                                            tan
                                          θ
                                                    tan

 Simplify : The six ratios between the sides have precise definitions.The six ratios between the sides have precise definitions. θ       θ    side      orθ Sin cot  θ    or    cot   θ   or   cot       θ   .   θ    tan    θ  2 1    . θ  tan cot θ + tan θ - cot θ - tan θ = 0
                    
 θ   
            θ  θ 
     
         Sin
   Sine
       Sine
 Sine
 Sin
                   
                      Sin
 θ   θ  
                                       θ
 θ   
  Sine
                       By pythogoras theorem we have,  AC  = AB  + BCBy pythogoras theorem we have,  AC  = AB  + BC
 HypotenuseAC
 HypotenuseAC
 The six ratios between the sides have precise definitions.
 ACThe six ratios between the sides have precise definitions.

 BC
 side
  side
 OppositeOppositeBC

              sec (360 - θ) = sec θ
 cot θ + tan (180+θ) + tan(90-θ) + (tan 360 - θ)  Sin θ      HypotenuseAC  0  Hypotenuse  2  2  2  2  2  2
        Sin
 θ   
 
 θ   Sine
           θ
 Sine
 
              Assignment
 HypotenuseHypotenuseAC
 The six ratios between the sides have precise definitions.The six ratios between the sides have precise definitions.
  side
 AC OppositeBC
  Opposite
 BC
 side

 Adjacent
                  side


 AdjacentAB
 = cot θ + tan θ - cot θ - tan  θ
     side Adjacent
 AB
 sideAB

              Assignment side AdjacentAB
 Sin
   θ
        Sin
                      0
            θ
 
           Cosθ
                      
                     
 Cosine Sine θ    Sine θ   θ        Opposite   side  Cosine sin ( 180 + θ) = - sin θ    Cos θ
   Cosine
                        Cos
         
 Cosine
 θ   
                            θ
               θ   
 Cos
 θ  θ 
 side
 OppositeBC
 BC
 HypotenuseHypotenuseAC
 AC
 HypotenuseAC
 = 0 AC
                        Hypotenuse
 HypotenuseAC
          HypotenuseAC
 AB

 AdjacentAdjacentAB
    side
 Sine θ    Sine  θ          side Sin Cos θ    Sin θ    cot (90  + θ) = - tan θ  0  8 What is the value of
       
    θ
 
 θ  
                    0
              θ
 θ   Cosine
 Cosine
          Cos
 
                            0 = 1/2, find the value of tan 60
              1 Given sin 30
                            0
 Simplify :  BC AC AC  HypotenuseHypotenuseAC   sideBC   Adjacent   side  1 Given sin 30  = 1/2, find the value of tan 60 0  8 What is the value of
 side
 HypotenuseHypotenuseAC
 AdjacentAB
 AB
 Opposite

                    BC
 OppositeBC
      side Opposite

                                 side
                   side Opposite
  Cos
              θ
      θ
         
 Cosine
 
                               
                                       
 Tan
            Tanθ
                         Tan
                             θ
                                       Tan
        Tangent
                                           θ
 Tangent  θ     θ   Cosine θ    Tangent  θ  θ    side   Cos 2 If cos θ  = 4/5, find the other radios  θ180 tan θsec  θ90 cos Dividing both sides of the equation by AC , we haveDividing both sides of the equation by AC , we haveDividing both sides of the equation by AC , we haveDividing both sides of the equation by AC , we have
  Tangent
                       
 θ   
                θ   
  
                                     
                        
                      
                                                                  2
                                            
                                           
                                                    2
                                  
                          
                                                                               2
                                                                                             2
 AC
 HypotenuseHypotenuseAC
 AdjacentAB

 AB
              2 If cos θ  = 4/5, find the other radios
 sideAdjacent
      side Adjacent

                                 side

                   side AdjacentAB
  tan BC
 AB
       side
 side
 AdjacentAB

 180  BC
 sideAB

    cos  90    θ Cosine   θ  θ    Adjacent    θ OppositeOpposite Tan θ    θ    Cos θ   θ     sec    360 Dividing both sidDividi   θes of the equation by AC , we haveoth sides of the equation by AC , we have


 θ  
          
   Cos

 
  sec   θ  Cosine
 

           Tan
 θ   
 TangentTangent
 
  

                              sin

                              180  2ng b
                                          90 
                                                          2
                                                                  2
 AC
 HypotenuseHypotenuseAC
                           θ 2
                    2
                                2
                                                            2 2
                 AC
                             BC AC
 side
              3 If sin A = 3/5, find cos θ, tan θ & sec θ
   side
  θ BC
              3 If sin A = 3/5, find cos θ, tan θ & sec θ
  sec   360    θ     sin  180    θ AB OppositeBC  cos  90  AdjacentAdjacentAB   Opposite   side  side  HypotenuseAC =  AB Hypotenuse  =  AB  cot 2  +  BC AC 2   θ 2  =  AB 2  +  BC AC  =  AB 2  +  BC 2
   HypotenuseAC
 AC
 HypotenuseAC
                            +
   
 Cosecant Tangent θTangent  θ    θ      Cosecant  θ    θ Cosecant  AC  2  AC Cosec oth sides of the equation by AC , we haveDividing both sides of the equation by AC , we have
 θ   
 Cosecant 
           Tan
 Cosec  θ  Tan
          
            Cosec  θ  θ
                          Dividing b
                                                                  2
                                                          2
 
                                        2
                                       Cosec
                  θ 
                          2
                                                                   2
                                                            2 2
                                  2
                                                                         2
                                2
                                              2 2
                                                      2
                                                   AC
                             ACAC
                                                                       AC
                                                                 AC
                                                         ACAC
                        AC
                                            ACAC
                                      AC
                               θ 2 2
                          2
                                             θ 2
                                     2 2
                                    BCAB
                              AB AC
                                           BC
 AB
 side
 sideBC  Adjacent side OppositeBC
 Opposite Adjacent side OppositeBC
                   sideBC
                                          )(tanθ

                         Opposite
      side Opposite
                               ( sinθ− side
                                     )(secθ
 BC
 AC
 HypotenuseHypotenuseAC
                                  +=
                                         +
                                                                   Simplify :
                            =
 
 CosecantCosecant Tangent θ θ      AB  θ      Opposite side   BC θ    θCosec  θ Tan  4 If tan θ  = 24/7, find sin θ and cos θ  )  2  2 Simplify :
              4 If tan θ  = 24/7, find sin θ and cos θ
    Tan
 Tangent
 θ
 θ   θ  θ
  
                                  2ding both sides of the equation by AC , we have
                                        2f the equation by AC , we have
                       Dividing both sides oDivi
                 θ
  sin
 sec  x  
                                2 2
                          2
   tan x  
                                              2
                                       2 2
    Cosec 
                                           AC
                              ACAC
                        2 AC
                                    ACAC
                                      2
                                                           2
                            =  2
                          2
                                              2
                                      2
                                2
                             AB AC
                       AC
                                           BC
       side
   sideAdjacent
 AB
 AdjacentAB

 side
     side
 BC
 OppositeOppositeBC
        =  AC  HypotenuseAC  HypotenuseAC  HypotenuseAC AB⎤ Hypotenuse  θ BCAB  ⎡+ )( tanθ−  ⎡ 2  )  2  ⎡ BC⎤ AB⎤ 2  ⎡ BC⎤ 2
                                    )( sinθ−
                  ⎡
                                                           ⎡
                                          BC⎤ AB⎤
 AC
 
 HypotenuseHypotenuseAC
                           ⎡=
                            BC⎤ ⎡+
                              (sec  AB⎤ =
                                                                             tan (90 + A) + (tan 180 + A) tan (90 + A)
  sin x  
                                                                         1
 SecantCosecant θ Secant  θ     sin x      Secant  θ θ  Cosec   Sec θ  5 Find the value of cos θ  and tan θ, if sin θ = 1/2 =  +  1  tan (90 + A) + (tan 180 + A) tan (90 + A)
                                    
 θ    θ  
                                       + θ
                                                     +
                                        2
                       
                                      2
        Secant
              θ 
                         + θ
                 =θ
                                  2
                          2
                                2
 Sec   
 θ   
 sec  θ  Cosecant
          θ Cosec
                                              2
 θ   
                       AC
                                   ACAC
              5 Find the value of cos θ  and tan θ, if sin θ = 1/2
                              2 ACAC
                                            = AC
                                               2
                  ⎢
                                       2
                               = 2
                                     ⎥ 22
                        Sec  2
                                     Sec  2
                                                          ⎥⎢
                                   2
                                    BCAB
                      ⎥AC
                               ⎥ ⎢ AC
                                            BC
                              AB
                       Adjacent
    side Adjacent
 sideOpposite
   OppositeBC
 AB  Adjacent HypotenuseHypotenuseAC  Adjacent   AB side     sideAB AC⎦ ⎡  ⎢ ⎣ AB⎤ ⎡ ⎣ BCAB⎤ =  ⎢ ⎣ BC⎤ ⎥⎢ 2 ⎣  ⎥  ⎢ AC⎦ AC⎦ ⎥  ⎢ AC⎦ ⎥
 sideAB

                               side

 BC
                  ⎣
                                                                    ⎣
                                                           ⎣
                                          AC⎦ AC⎦
                                                      ⎣
 HypotenuseHypotenuseAC
 AC AC
                            =
                                 ⎡+
                            AC⎦ AC⎦ ⎤ ⎡ +
                                       2
 θ   Secant
                   θ
                                   2
                                               2
                                       +
 θ     θ  
      θ  θ Cosec
                               +
 Cosecant Cosecant         Cosec    θ 6 If cos θ  = 5/13, find the value of tan θ  cos   (90  +  θ      ) ⋅ sec  (-θ      ) ⋅ tan   (180    -   θ    )
                            = 1 2
                          2
   Sec
          Sec
                                         2
 Secant
 θ   
                                    ACAC
                       = AC
                              = ACAC
                                            AC
                           2 ⎥ ⎢
                                            ⎥ 2
                         ⎢
                                 ⎢ ⎥ 22
                                   2 ⎥ ⎢
                             2
 tanθ

                                                                                  (90
                                                                                              (-θ
                                                                                          sec
                                                                                              ) ⋅
                                                                               cos
                                                                                                     (180


    side side
 side side Opposite
 AdjacentAdjacentAB
 1 BC
 OppositeBC
 AB
                 1 =  (cos θ)  + (sin θ)1 =  (cos θ)  + (sin θ)1 =  (cos θ)  + (sin θ)1 =  (cos θ)  + (sin θ)
                     side AC⎦ ⎣ BCAB⎤
                                   side ⎦ ⎣ BC⎤
                                    AC ⎦ ⎤ ⎤
                           Adjacent ⎣ AC
              6 If cos θ  = 5/13, find the value of tan θ 2
  ABAC
  HypotenuseHypotenuseAC
        side
 Adjacent
         AB
 Adjacent
 secθ side AB
              Simplify:
                    =     sinθ BCAB Opposite   θ    CotangentSec  θ     BC    Simplify:  Adjacent AB ⎣ ⎡ ⎢  AC⎦ ⎤  θ   + =  ⎡ ⎡ AB ⎥ ⎥ 22   + 2 ⎡ 2 AC⎦ θ    2  2  2   2  2  2  2  2 sec  (360  +  +  θ      )⋅     )⋅ sin     (180   θ+     ) ⋅ tan     )⋅     )⋅   cot     (90   -   θ  +   )  θ    )   )
                                                                         2
   θ
   θ   θ  Secant
    θ     θ    Cotangent θSec
                      =
 Secant
                                                                                                              θ
                                                                                                     cot
                                         Cot
                                                                                     +
             
                                                                                                        (90
                                                                             sec
                                                                                                  θ+
  
 
 
 Cotangent
                                                                                          sin
                          
                            Cot
                                                                                            (180
 Cot
                                                                                 (360
                  θ     θ   
 Cotangent
              Cot
                                                                                       θ
 cosθ
                                                                                                            +
                                          2 ⎥ 2
                                                                                       θ
                                 2 ⎢ ⎢
                                         2 ⎢
                            2 ⎥ 2
 AdjacentAB
 Opposite
   BC
                   2  side

 side side Adjacent
                                 2  side   AC⎦
    side
        side Opposite
                 sin  + tan ( 180° + θ  +  cosACAC⎦⎤ ⎤
                                         ⎡
                 Cot θ  +  cos OppositeBC 1 =  (cos θ)  + (sin θ)1 =  (cos θ)  + (sin θ)
                         ⎡
                             0   θ   = 1sin ) + tan (90° + θ  +  cos  θ   = 1sin )
                                         ⎣ BC
                        ⎣ AB
                                ⎣ ⎣ BCAB
                                          0 θ   = 1sin ) + tan (360° - θ  +  cos  θ   = 1
                                 ⎡ ⎡
                                             2 2  2
 AB HypotenuseHypotenuseAC
 AC
                                             2θ − cos θ
 AdjacentAB
       side
 side

              Cot θ + tan ( 180 + θ) + tan (90  + θ) + tan (360 - θ)
              7 If sin θ = 1/2, find the value of sin θ − cos θ
   Sec
 
 Secant
              Cot θ
 θ   Secant
      θ
                                        +
                               + =
                       =
                 θ
   θ     θ  
            
                         ⎢
                                  2 ⎢ ⎢
                         2  ⎥
                                     ⎥ ⎥
                                         2 ⎢
 simplify:  CotangentCotangent    θ    OppositeOppositeBC side AdjacentAB           Adjacent  Cot θ   Sec  7 If sin θ = 1/2, find the value of sin ⎦⎤ ⎥  2  2 2  0
 side side
 BCAdjacent
 AB
                                 ⎣ AC
                       sin ) = tan θ  +  cos  θ   = 1
                                 ⎣

        side
                 tan (180° - θ  +  cos  θ   = 1sin  + (sin θ)1 =  (cos θ)  + (sin θ)
                      1 =  (cos θ) ACAC⎦
                         ⎣
                                2
                                 2
                                         2 2
 AdjacentAB
 side

  Adjacent
 AB
        side
 Relationship between the ratiosRelationship between the ratiosRelationship between the ratiosRelationship between the ratios  ⎦ ⎦  ⎣ AC⎦
                    Sine,  Cosine,  Tangent,  Cosec, Sec  andSine,  Cosine,  Tangent,  Cosec, Sec  andSine,  Cosine,  Tangent,  Cosec, Sec  andSine,  Cosine,  Tangent,  Cosec, Sec  and
                     0
   θ   
 CotangentCotangent   θ        Cot  θ      tan (180  - θ) = tan θ
                  θ
              Cot
 BC
 OppositeBC
 side
   Opposite
                       1 =  (cos θ)
                    Cotangent are the six trigonometrical ratiosCotangent are the six trigonometrical ratiosCotangent are the six trigonometrical ratiosCotangent are the six trigonometrical ratios
                      sin ) = - cot θ  +  cos  θ   = 1
  sec  
                                 2
  θ
                                 2 2
  θ
                         2
    cos  90  Relationship between the ratiosRelationship between the ratios side Adjacent    1 side  1AC tan (90° + θ  +  cos  θ   = 1sin  + (sin θ)1 =  (cos θ)  + (sin θ) 2
 180 



                                          2 2 2
 side

  θ AdjacentAB
  tan AB
                     1
 1 AC
 1
 AC
 1
                           1
 1AC
                          Sine,  Cosine,  Tangent,  Cosec, Sec  andSine,  Cosine,  Tangent,  Cosec, Sec  and
      Cot
     
          θ
 
   θ   
               Cot
                  θ
                  
 θ 
 Cosec  θ  Cotangent Cotangent   θ    θ   Cosec  θ   tan (90  + θ) = - cot θ
                    0
                        
 Cosec
  Cosec
  θ sin BC
  θ   side
 cotθ  BC OppositeBC
   Opposite
 BC
  θ BC
 sin
               θ   tan (360° - θ  +  cos  θ   = 1sin

  sec   360  Relationship betweenRelations 1AC the ratioship betw  θ BC  sinBC  BC side    sinBC  BCsin 2  Cotangent are the six trigonometrical ratiosCotangent are the six trigonometrical ratios

                          sin
 90 
 180 
                             θ   ) = - tan θ  +  cos  θ   = 1
                                  2 2
                                           2
                                          Sin 
 11een the ratios
                                                                     Sin 
                                                       Sin 
                           Sin 
 AC
 1
                         Sine,  Cosine, Sine,  C
                                         2  Tangent,  Cosec, Sec  andosine,  Tangent,  Cosec, Sec  and
                                                        2
                                                                                   2
                                                                     2
                     0 θ = θ =
                                                  θ = =
                                                  2
                                                             tan θ = θ =
                                                                θ = =
                                                                2
                                                                θ  θ =
                       θ =
                                                  θ  θ =
                                  tan θ = θ =
                                                                                           2
                                                                             2
                                     θ = =
                                     θ  θ =
                    tan θ = θ =
                                               tan θ = θ =
 θ
 Cosec  θ Cosec      AC   AC  tan (360  - θ) = - tan θ  and sin  θθ θθ θ + cos  θ θ  θ θ  θ = 1 and sin  θθ θθ θ + cos  θ θ  θ θ  θ = 1 and sin  θθ θθ θ + cos  θ θ  θ θ  θ = 1 and sin  θθ θθ θ + cos  θ θ  θ θ  θ = 1
                    AC
 AC
                           Cos  
                                         Cos  
                                                      Cos  
                                                                    Cos  
                         WCS - Electronics Mechanic : (NSQF - Revised Syllabus 2022) - 1
 BC
                                                                                    st
                         WCS - Electronics Mechanic : (NSQF - Revised Syllabus 2022) - 1  Year : Exercise 1.6.26
                                                                                                                  63
 0  Relationship between the ratiosRelationship between the ratios
                                         Sin 
                                  Sin 
 1 1
 1 AC
 cos (90 + θ) = - sin θAC  BC BC  sin θ   BC  sin 1 θ    Cotangent are the six trigonometrical ratiosCotangent are the six trigonometrical ratios  st Year : Exercise 1.6.26  63
                                                2  Tangent,  Cosec, Sec  and
                                                               2  and
                          Sine,  Cosine,  Tangent,  Cosec, Sec Sine,  Cosine,
                                        and sin  θθ θθ θ + cos  θ θ  θ θ  θ = 1θ + cos  θ θ  θ θ  θ = 1
                                     θ = =
                                                and sin  θθ θθ
                             θ = =
                                                       2
                          tan θ = θ =  tan θ = θ =
                                                        2
                             θ  θ =
                                     θ  θ =
 Cosec  θ Cosec      AC    cot θ + tan (180  + θ)+ tan (90  + θ) + tan ( 360 - θ)
 θ
 AC
                            0
                                        0

                                                       0
                                 Cos   Cos  
 θ   BC
                          Cotangent are the six trigonometrical ratiosCotangent are the six trigonometrical ratios
 sin
 BCBC
 BC
                                 Sin 
 sec (- θ) = sec θ  θ Cosec      1 1   sin 1 θ    tan θ = θ =  tan θ = θ =   Sin   2   and sin  θθ θθ  61  61  61  61
 AC
 1 AC
                             θ = =
                                        and sin  θθ θθ θ + cos  θ θ  θ θ  θ = 1θ + cos  θ θ  θ θ  θ = 1
                                     θ = =
                                     θ  θ =
                             θ  θ =
                                                        2  2
                                                                2
 θ
 Cosec
 θ   BC
                                Cos  
 BC  AC  sin AC  sin θ    cot θ + tan θ - cot θ - tan θ = 0  Cos    22  61  61
 BCBC

                                  Sin 
                                          Sin 
                                        and sin  θθ θθ θ + cos  θ θ  θ θ  θ = 1θ + cos  θ θ  θ θ  θ = 1
                                                        2  2
                                      θ  θ =
                                      θ = =
                             θ = =
                             θ  θ =
 AC  AC                   tan θ = θ =  tan θ = θ =  Cos    2   and sin  θθ θθ  2   61  61
                                 Cos  
                                           CITS : WCS - Mechanical - Exercise 6
 Assignment                                                          61       61
 1 Given sin 30  = 1/2, find the value of tan 60 0  8 What is the value of
 0
 2 If cos θ  = 4/5, find the other radios

 3 If sin A = 3/5, find cos θ, tan θ & sec θ
 4 If tan θ  = 24/7, find sin θ and cos θ  Simplify :
 5 Find the value of cos θ  and tan θ, if sin θ = 1/2  1  tan (90 + A) + (tan 180 + A) tan (90 + A)
 6 If cos θ  = 5/13, find the value of tan θ  cos   (90  +  θ      ) ⋅ sec  (-θ      ) ⋅ tan   (180    -   θ    )
                    2  sec  (360  +  θ      )⋅ sin   (180   θ+      )⋅ cot   (90  +  θ    )
 7 If sin θ = 1/2, find the value of sin θ − cos θ
 2
 2
 WCS - Electronics Mechanic : (NSQF - Revised Syllabus 2022) - 1  Year : Exercise 1.6.26  63
                               st
   30   31   32   33   34   35   36   37   38   39   40