Page 176 - WCS - Electrical
P. 176

π

 applied

 Force
                    π 2
                     d =
                      π
 Stress =


 applied
 Force
                         4
                  d = 4

 sectional
 area

 Original
 cross
 Stress =
                         π
                4


 Force
 cross

 sec
 Original

                     d =
 Stress =
                    4

 cross
 Original

 sectional

                                  500
                          500
                    Load
                         =
                               =
            Stress =
                Load


 forced
 N
 Load
 (or)

                                    22
                    Area
                           = 16π
                     =
                  π
                                16x
 σ =



 Load
 applied
 forced

   Fo

 (or)rce
                          500
                                22
             π 2
                Area
                   Load 16π

              d =
 Area
 σ = =
 =
 Stress
                              =
                        =
                            16x
            Stress =
 mm
                  4
            4
 (or)
 N
 Load
   cross
 2 area
   Original
                                    22
   sectional
 Area
                    Area
 mm
 =
 σ =
                                16x
                     500x7
 Area forced N = applied area tional 2 2      area       Stress =  π 2  π 2 4 500 4 16π 500 7 500 7 7
 mm
                   =
                 500x7
                          500
            Load
                   500
                     16x22

 stress
                = =
   σ = Load   (or)   forced  =  N  Stress =  Area  16x22 = π 16x  22   WORKSHOP CALCULATION & SCIENCE  - CITS
                     500x7
 E =

                   16π
 stress
                   =
 strein
 E =
 stress
                             7
 Area
                   d =
 mm
                   π
      Stress =   strein  Force 2applied       π 2  π 2 16x22 Applied   load
 E = Force

 applied
                        4
                  4 =
               d
 Original
 Stress =  Original shear   cross   sectional   area    Spring     500x7 4  Applied   load
           Spring

                 stiffness =
 strein
              4

 stress
 cross

                           Deflection
 area

   sectional
             stiffness =
 G =
                          Applied
 stress
 shear

                                 load

         G = stress F shear  orce    applied      =  π 16x22 π  Deflection 500  2
          Spring
                stiffness = 500Load
 strain
                  2
           3  If ultimate stress is 2.5 kg/mm  and factor of safety is 4. Find safe stress for suspending a
               d =
 Stress =  Orig Lo G = cross inal (or) ad  shear   stress    N     Stress =  4  500  Deflection 10
                       =
                             =
 strain

  shear
              Load
                            500
 E =
             4


 forced
                                  22
                  Area
                     newtons
                         =
                   =

 σ =
           0.4 mm diameter wire. 16x
 =
                  π
 (or)

 strain
  F
 shear
       Load strein forcedapplie orce      sectional area  Stress =  600 =  600 16π 16π  22  10  30
 Nd
             π 2
              Area
                  newtons

              d
 Area =
 Stress  Orig Areacross inal volumetric   mm 2    Spring   stiffness = 4 App   mmload ied 16x  7  30 7  10  2
 σ = =
                    30l

 stress
             4


                       50
 2  nal
             Load
 area
                     newtons 5000
 sectio
 K =
           Solution: Ultimate stress = 2.5 kg/mm
                  600 mm 0
                3
 stress
 volumetric
                  =
 stress
                    Deflection

 volumetric
 strain
      G =   shear     forced    mm  Stress =  Area   500x7 =  22  30
 Lo
 N
 K =(or) ad
                    16π
                       mm

                    30
 stress

 volumetric
 σ =  shear   strain    strain 2     Factor of safety = 4 Ultimate    stress
                  =
  volumetric =
                          16x
               500x7 500Load
                           500
 K =

             =
                        Ultimate 7
                    Safety =

 Area stress

                        =
                  =
 volumetric
 N
 E = forced )

                              Safe
    Load   (or stress  mm   strain  Stress = Factor   of16x22   10    stress
                                  stress
        Factor
              of
                  16x22

                             22
                Safety =

                   16

           600 Area
              newtonsπ
 σ =  E =  strein =    Factor0x   Safety =  Ultimate    stress
                         16x
                          Safe
                              stress
                                30

                 of7
 2
 strein
               mm
             30

 mm
      Area    s stress  ratio =  Lateral   strain       50  Applie 7    stress
 volumetric
             =
                             Safe load d
 Poisson'
   K =   volumetric   stress ar Lateral   strain     Spring   16x22  Applied   Ultimate    stress
               stiffness =
 Linear
 Poisson' stress
 strain


   s
 ratio =
                           load
 strain
 she
               Safe
           stiffness
 strain
 Linear



                       Ultimate
                                stress
      E =   G =    stress  Lateral   strain    Spring     500x7   = stress = Deflection stress
            =
 ratio =
 Poisson's shear
 strein
                             Safes

                    Ultimate
                             stres
                stress = Deflection
           Safe


 shear
 G =  stress    strain    strain  Factor   of   Safety =  Safe   stress stress
                16x22

                           Ultimate
 Linear

               Safe

 E = shear   strain E    Spring   stiffness = newtons 600   stress = stress Safe load Applied   10
 1+
 μ =
                               10
 strein
 E

   shear

                    Deflection
                    π 2
                                  30
   Poisson'    s   ratio = stress 2G strain  Force   applied      600     newtons d   2.5 π  Safe   stress
 μ = Lateral
                       = =
 1+
 G = Stress =
                     2.5
                  30
                     mm load plied
                       Ap
                              30
   volumetric
 E stress
                         4 4
 2G
                    4
   Origi
 shear
 cross

 1+ Linear
 K =

 μ =

              30
                 mm
 volumetric

 stress
                        2.5
 stress

     K = shear vo strainnal strain    sectional   area  Spring   stiffness   = = Ultimate    stress  2
                      4
                              10
 E

            stress = Deflection
        Safe
 2G strain ric
  lumet


                       = 0.625 kg/mm  Ans.
                       =
 1
 G =  she μ = strain ar  μ =  strain      600   newtons Safe 4 Ultimate stress  Ultimate 500500 30     stress
 −
                          stress


 E  tric
 volume

                    Load
 1 2G
 −
             Safe of or
                  Safety
                         π
                               stress   =
         Fact Stress

                      Ultimate
                              stress

 E Force
                mm
              30

      volume   2G stress tric   (or)   forced   applied    Facto  4  If ultimate stress is 2.5 kg/mm2 and factor of safety is 4. Find out the safe load for the suspension of 4.2 mm
 E
                  stress = = ==  π 2
                      Ultimate  10

                               of
 N
                Safety d =
 Load
                            Safe

                         Factor
                                  safety
                                   stress 22
              stress = = Area
 −
 μ =
 μ = =
              newtons
 K = 1+ Stress 2Gric   2G cross inal 1  = sectional   area  Safe  of r      2.54 Factor 16π safety
           600

 σ =
                                   16x
                          4
                                 stress
              diameter wire. Ultimates Safe
                               stres
 volumet Orig


 strain
                            of30
 Lateral

                  stress =
 Area

 strain 2
 mm
             30

                         π


 volumetric
 stress
 Poisson'
   s
                  4 Ultimate
                               2

 ratio =
                               of
                                 safety

                         Factor
   Poisson'    s   E ratio =  E Linear     strain E      Factor   of     Safe = mm   2.5 Safe (4.2)   stress  7
 strain

 Lateral
                   =
                        ×
           Solution: Diameter of wire d = 4.2 mm
 K =
                     π
                2.5=
             Safety

                         Ultimate
                                  stress
                           2
  

 
                                  500
                    Load
                    ×4
                         4500
                       (4.2)
 strain
               =
   volumetric

                     500x7
                  stress =
             Safe

                           stress
 E  −
 1
 = 3K
 + 2
  −
 Line

 −1 ar
  E   2 1−
                     Ultimate
                             stress
   μ =
                               =
  
 
 
 
                    2.5 4
                 4 =


                       × stress  teat
              stress =Ulti

                           (4.2) stress Safeess  e
                             str
           Area of original cross – section
 −1 2G forced (or)
         Safe
 N

 1
  − 
 
  
 
 = 3K  
                    Area
                          16π
   Poisson  −  21  2G Load  E stress         strain   G 1 1 + 2   G  + 2      Fa Safe ctor   stress =y of Stress = = Ultimam π = 4 stress fe safety 2 16x  22
             Safet = 16x22
  strain ral
 =
   =
 Late
  σ

 E
                     4 Sa
  2G
 
  
  ratio s'
                            stress
                          Safe

 = 3K
 E
                        of
  −  21 = E = Area
                  Factor
 −1
                                    7
  −2
 
 
 
 Linear
  2G strein
 μ =
                          22 stress  te
                    Ultima
 1+
 
  
                  = =   2.5
 
   Poisson'   1+ ratio = E Lat 2G strain eral   strain  mm  G      Safe   stress   2.5 22 × 2 7× stress e Applied   load
                                   4.2
                             ×
                               4.2×
 μ =
             2.
                2.5 π5
                     =

   s
                  2.5 500x7

                     4Saf
  
           Spring
                    (4.2) 4 =
                   =
 3K   Linear
                 4 4 Ultima
 E
     E   2G    E    strain   3G - E                                 sq. mm 4.24.2×××= ×=  4    = stiffness  22 stress  te 4
 
                    2.5 47×

 = 3K
 E  −3
  3G 

                   4
  −1 E E
                            Deflection
 1
  −  21      3K   μ = =    shear = 3K     stress  - + 2 E       Safe   stress = = 16x22 Load 4.2× 4.2 1000
   = 3K
 
                             ×
 −
                       ×
   stress

 G
  −3  
                                 30×
 
 
   G 1−
 G
 μ EE =

  3G 
   1   2G =+    μ =    3K   G 2G    strein   strain  G    G - E         Working   2.5 4Saf 7× str e  4ess =  1000
                   stress =mate
                              30× stress
                       Ulti
 E   r
   shea
                       Load
 2G 1−
 
 
                =
                                    600
  
                           Area
        Working

                            = stress
                   Ultimate
                                     10
     2G E   −3  G   = 3K   G      Safe   stress  Safe   stress  stress = = Area  Factor  of   safety 1000
                   4
                                 30×
                  =
                          Load 600
                          Applied
 1+ μ   = E 2G                 2.5  600   newtons  =   load 30
                  22
           Working

                     2.5
                   stress =

                   Facto
           = Spring
                × stiffness
                       4.2× safety of r=
                            4.2
                      ×
  9KG
                                    stress
                            Ultimate

                           Area
                =
                                    600
 1 shear
              4

 stress
                  of × 2.
                           Deflection
                    7
 =
 
                             2
  9KG
                 = 4
 E
    μ =     K G  − E volumetric   -   stress          Factor Ult   4 π5 mm 30  Ultimate   stress
   3G
  
 
   E =
                     safety = stress  imate (4.2)×
  2G =
  + 3K
           stress
 3
 3K    E − E =    E   9KG strain       E    Safe     2.5  = ×  π  2 4  Working   stress
               of

  G 
        Factor
                 safety = 2
 
  = 3K   strain shear
                   4 (4.2)
    volumetric
             =
                            Ultimate
  −1
                             ×ety
                        kg/mm 30Load of Factor
 
   = 3
   −
                         Working
 + 3K  
                                stress

 
 G E
 E     2 1
    μ =  G −  G −1 + 3K   1K  + 2 G    + 2      Working      Factor    60 Area  = stress     saf 1000       stress
  E
 = 
  
                    safety = Ultimate  10
               4
                      4
 
                  of
 
            Factor
                                    stress
            stress
                    = Ultimate

  −1
 1
 −1
  G    −= 3K
    2 2G
  2G  
                      newtons 0
                  of
 
 
                    Safety =
                            Working
                                    stress

 
           stress =
                             600

      Safe
              2.5
  2G
 G
                   π
                                    30
  
 
                        2

                                   stress
                              Safe

                         450 safety of r
                 ×Facto
                            M.Pa
            =
                    (4.2) mm 30
      E    volumetric   stress     Safe load = Safe stress x Area of original cross- section
                       =22
 E
               4
                   4 2.5
 
  

 K =
  −  21   E Poisson' volu  = 3K Lateral   strain    Factor   of     2.5 π2.5  =    450 2   M.Pa stress

 + 2
                     Ultimate
 −1
 1
 
                            M.Pa 4.24.2×
  9KG  
                             ×
  −
                      ×
                         50
                   = 22
 
 =
  ratio =  metric
 strain

 
    s
  2G
                          4
 G
                       7×
                        450 4.24.2××
  

                     50
                        M.Pa
  
  E
 -
  G 
 
               4

 Linear
 
                             stress stress  timate stress  ltimate
                              Ul U
                       =
 
      E  + 3K E         = 3K E  3G strain     = =  safety = 4 (4.2)× × 4 7× Working   M.Pa
 
 3K  
                      4
              4
   3G
               Safe of r
                             =
                    stress =
  −3   = 3K1
  −  21   3K      −3  − E    G = 3K  −  -  E   2 G         Facto   Safety Load  30× 1000
 1
 +
                         50
                            M.Pa
 
   
 
  
                             Safe
             2.5
                              Safe
                   22
 G
                              =
 
       2G  G            G         Working ×   stress = 4.2× 3d  4.210000×   stress  stress
                     Loa
                       ×
 
            =
                          =
              4
                 450 47×
        E      μ =o   E Lateral    strain  Working   stress =   M.Pa Area  600  600
  3G
 -
 E
                     Area
 Poisson
 =
                   22
                         2.5
 3K   −3     1+ratis'     9KG       strain    2.5 = × 50   × = 4.2× 4.2
 = 3K
 
 
 2GLinear
           =

                    M.Pa Ultimate stress  Ultimate
 G 
                               1000 stress
            = 8.6625 kg. Ans.
                    Load
 
  
 E
 =
                     4
 
 
                         = =4

                      Ultimate
 E
           9KG    3G G - E      Working Fa   stress = safety of ctor 74Safe   × stress = 30×   stress
  
                             Safe

                                  stress
 + 3K
                             600 stress rking
                          Wo
 3K  E 3 = −        G        Factor 5  A motor vehicle steering tie-rod has a cross sectional area of 600 mm2 and it is subjected to a tensile load of
                    Area

 = 3K
            of
               safety =

 
 E
 
 + 3K
                      Working ×
                               1000
                          30
                              stress
  
 E

      G G μ =    1−  G      Working    Load  =Ultimate    stress
              30 kN. If the tensile strength of steel is 45o MPa (mega pascal) , find the factor of safety provided for in this
            stress =
     9KG μ1+  2G     Safe   stress    600
  =
                             stress
                      Ultimate

 E =   2G  Factor   of  rod.  Area = 2.5 M.Pa of     safety
                       450 Factor
              safety = =

  G
 + 3K
                         4

                      M.Pa
     9KG          450 = Working   stress
                          M.Pa stress te
                     Ultima

                 =   2.5
                       50π
 E =     μ =   E  − 1  Factor   Solution:   Ultimate Stress   = Tenlile strength
              safety =

                                2
           of
                      M.Pa (4.2)×
                   =

  G + 3K  E       E       50 Working   stress stress  ate
  
                          4 Ultim
                      4
  2G
 1
  −  21    −1     = 3K  −  + 2   Safe   stress  = 450 MPa
                       =
                  450
                      M.Pa
 
    2G       G    =  Factor   of   safety

                   50
                     M.Pa
           Load = 30 kN = 30 x 1000 newtons

                 450 2.5  22   2
                     M.Pa π

                =   2.5
                           (4.2)
                        ×
                   =
                                    4.2
                               4.2×
                   =
                        ×
                              ×
     E       E    Area of cross- section = 600 mm 2

                  50
                     M.Pa 44
  −  21       −1      = 3K  3G - E + 2   4  7× 4
 1
  −
 E 
 
 
  −3
   3K   2G       = 3K    G   
 
     G       G      Working   stress =  Load  =  30× 1000
           Working stress =  222.5 ×  Area 4.2× 4.2

                                    600
                             ×
                  =
                         7×
                            4
                     4
      E      3G - E   = 50 newtons per mm 2

 
 3K  E  −3   9KG = 3K        Ultimate   stress
  
 =
 
             Factor
 
 

 
 G
                           Load
                                     1000
                                  30×
      G        G      = 50 MPa of   safety =  Working   stress
 + 3K
           Working

                   stress =
                                =
                           Area
                                    600
           [ 1 MPa = 1 newton per mm MPa means mega pascal]
                                    2
     9KG               450Ultimate   stress

                             M.Pa
 E  =     Factor of safety =
            Factor
                  of


                     safe
                       =ty =
  G + 3K                50  Work    stress
                            M.Paing
                         450   M.Pa
                       =
                         50   M.Pa
                                                           163
                                           CITS : WCS - Electrical - Exercise 16
   171   172   173   174   175   176   177   178   179   180   181